Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2024-2-C3-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2024-2-C3-P1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2024-2-C3-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2024-2-C3-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2024-2-C3-P1.pdf")) % (defun e () (interactive) (find-LATEX "2024-2-C3-P1.tex")) % (defun o () (interactive) (find-LATEX "2024-1-C3-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2024-2-C3-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2024-2-C3-P1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun oe () (interactive) (find-2a '(o) '(e))) % (code-eec-LATEX "2024-2-C3-P1") % (find-pdf-page "~/LATEX/2024-2-C3-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2024-2-C3-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2024-2-C3-P1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2024-2-C3-P1.pdf") % file:///home/edrx/LATEX/2024-2-C3-P1.pdf % file:///tmp/2024-2-C3-P1.pdf % file:///tmp/pen/2024-2-C3-P1.pdf % http://anggtwu.net/LATEX/2024-2-C3-P1.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2 Maxima2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2") % (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2") % (find-MM-aula-links "2024-2-C3-P1" "3" "c3m242p1" "c3p1") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-maxima» (to "defs-maxima") % «.defs-V» (to "defs-V") % «.title» (to "title") % «.links» (to "links") % «.questao-1» (to "questao-1") % «.algumas-defs» (to "algumas-defs") % «.questao-2» (to "questao-2") % «.barranco-defs» (to "barranco-defs") % «.questao-1-grids» (to "questao-1-grids") % «.gab-1» (to "gab-1") % «.gab-1-maxima» (to "gab-1-maxima") % «.gab-1-p2» (to "gab-1-p2") % «.gab-1-p3» (to "gab-1-p3") % «.gab-1-p4» (to "gab-1-p4") % «.gab-1-p5» (to "gab-1-p5") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-LATEX "dednat7-test1.tex") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2024-2-C3.pdf} \def\drafturl{http://anggtwu.net/2024.2-C3.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2024-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2024-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat7load.lua"} % (find-LATEX "dednat7load.lua") \directlua{dednat7preamble()} % (find-angg "LUA/DednatPreamble1.lua") \directlua{dednat7oldheads()} % (find-angg "LUA/Dednat7oldheads.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L --dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs-maxima» (to ".defs-maxima") %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") \pu % «defs-V» (to ".defs-V") %L --- See: (find-angg "LUA/MiniV1.lua" "problem-with-V") %L V = MiniV %L v = V.fromab \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c3m242p1p 1 "title") % (c3m242p1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 3 - 2024.2} \bsk P1 (primeira prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2024.2-C3.html} \end{center} \newpage % «links» (to ".links") % (c3m242p1p 2 "links") % (c3m242p1a "links") {\bf Links} \scalebox{0.6}{\def\colwidth{16cm}\firstcol{ \par \url{http://anggtwu.net/e/maxima.e.html\#2024.2-C3-P1-Q1} \par \url{http://anggtwu.net/e/maxima.e.html\#2024.2-C3-P1-Q2} \par \texttt{(find-es "maxima" "2024.2-C3-P1-Q1")} \par \texttt{(find-es "maxima" "2024.2-C3-P1-Q2")} }\anothercol{ }} \newpage % «questao-1» (to ".questao-1") % (c3m242p1p 3 "questao-1") % (c3m242p1a "questao-1") % (c3m241p1p 3 "questao-1") % (c3m241p1a "questao-1") {\bf Questão 1} \scalebox{0.58}{\def\colwidth{9cm}\firstcol{ \vspace*{-0.5cm} \T(Total: 3.5 pts) O diagrama de numerozinhos da última folha da prova corresponde a uma superfície $z=F(x,y)$ que tem 6 faces. Também é possível interpretá-lo como uma superfície com 7 ou mais faces, mas vamos considerar que a superfície com só 6 faces é que é a correta. \msk a) \B (0.5 pts) Mostre como dividir o plano em 6 polígonos que são as projeções destas faces no plano do papel. \msk b) \B (0.5 pts) Chame estas faces de face N (``norte''), S (``sul''), W (``oeste''), C (``centro''), E (``leste'') e NE (``nordeste''), e chame as equações dos planos delas de $F_{N}(x,y)$, $F_{S}(x,y)$, $F_{W}(x,y)$, $F_{C}(x,y)$, $F_{E}(x,y)$, e $F_{NE}(x,y)$. Dê as equações destes planos. \msk c) \B (0.5 pts) Sejam: % $$\begin{array}{rcl} P_{C} &=& \setofxyzst{z = F_{C}(x,y)}, \\ P_{E} &=& \setofxyzst{z = F_{E}(x,y)}, \\ r &=& P_{C} ∩ P_{E}. \\ \end{array} $$ Represente a reta $r$ graficamente como numerozinhos. }\anothercol{ d) \B (0.5 pts) Dê uma parametrização para a reta do item anterior. Use notação de conjuntos. \msk e) \B (0.5 pts) Seja % $$A \;=\; \{0,1,\ldots,9\} × \{0,1,\ldots,11\};$$ note que os numerozinhos do diagrama de numerozinhos estão todos sobre pontos de $A$. Para cada ponto $(x,y)∈A$ represente graficamente $(x,y)+\frac13 \vec∇F(x,y)$. \ssk Obs: quando $\vec∇F(x,y)=0$ desenhe uma bolinha preta sobre o ponto $(x,y)$, e quando $\vec∇F(x,y)$ não existir faça um `$×$' sobre o numerozinho que está no ponto $(x,y)$. \msk f) \B (1.0 pts) Sejam % $$\begin{array}{rcl} Q(t) &=& (0,2) + t\VEC{1,1}, \\ (x(t),y(t)) &=& Q(t), \\ h(t) &=& F(x(t),y(t)). \\ \end{array} $$ Faça o gráfico da função $h(t)$. Considere que o domínio dela é o intervalo $[0,9]$. }} \newpage % «algumas-defs» (to ".algumas-defs") % (c3m242p1p 4 "algumas-defs") % (c3m242p1a "algumas-defs") \sa{Tf}{T_{2,x_0}f} \sa{TF}{T_{2,(x_0,y_0)}F} {\bf Algumas definições} \scalebox{0.6}{\def\colwidth{16cm}\firstcol{ Em Cálculo 1 e Cálculo 2 você viu que se $f(x)$ é uma função de $\R$ em $\R$ então a aproximação de Taylor de ordem 2 pra $f(x)$ no ponto $x_0$ é: % $$\begin{array}{ccl} (\ga{Tf})(x) &=& f(x_0) \\ &+& f'(x_0)Δx \\ &+& \frac{f''(x_0)}{2}Δx^2 \\ \end{array} $$ A ``versão Cálculo 3'' disto é a fórmula abaixo. Se $F(x,y)$ é uma função de $\R^2$ em $\R$ então a aproximação de Taylor de ordem 2 pra $F(x,y)$ no ponto $(x_0,y_0)$ é: % $$\begin{array}{ccl} (\ga{TF})(x) &=& F(x_0,y_0) \\ &+& F_x(x_0,y_0)Δx + F_y(x_0,y_0)Δy \\ &+& \frac{F_{xx}(x_0,y_0)}{2}Δx^2 + F_{xy}(x_0,y_0)ΔxΔy + \frac{F_{yy}(x_0,y_0)}{2}Δy^2 \\ \end{array} $$ e a gente diz que as derivadas até ordem 2 da função $F$ são as funções $(F,F_x,F_y,F_{xx},F_{xy},F_{yy})$. Eu costumo organizar elas numa matriz: % $$D_2F = \pmat{F \\ F_x & F_y \\ F_{xx} & F_{xy} & F_{yy}}$$ $$(D_2F)(x_0,y_0) = \pmat{F(x_0,y_0) \\ F_x(x_0,y_0) & F_y(x_0,y_0) \\ F_{xx}(x_0,y_0) & F_{xy}(x_0,y_0) & F_{yy}(x_0,y_0) \\ } $$ }} \newpage % «questao-2» (to ".questao-2") % (c3m242p1p 5 "questao-2") % (c3m242p1a "questao-2") % (find-es "maxima" "2024.2-C3-P1") {\bf Questão 2} \sa{Tf}{T_{2,x_0}f} \sa{TF}{T_{2,(x_0,y_0)}F} \sa{TFP2}{T_{2,(1,2)}F} % «questao-3» (to ".questao-3") % (c3m241p1p 4 "questao-3") % (c3m241p1a "questao-3") % (find-es "maxima" "2024-1-C3-P1-Q3") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \vspace*{0cm} \T(Total: 6.5 pts) Sejam % $$\begin{array}{rcl} F(x,y) &=& xy(6-2x-y), \\ P_1 &=& (0,6), \\ P_2 &=& (1,2), \\ P_3 &=& (3,0), \\ P_4 &=& (0,0). \\ \end{array} $$ a) \B (0.5 pts) Calcule $D_2F$. \ssk b) \B (0.5 pts) Calcule $D_2F$ nos pontos $P_1$, $P_2$, $P_3$, e $P_4$. \ssk c) \B (1.0 pts) Calcule $\ga{TF}$ nos pontos $P_1$, $P_2$, $P_3$, e $P_4$. \ssk d) \B (0.5 pts) Os pontos $P_1, P_2, P_3$ e $P_4$ são pontos críticos da função $F$? Quais deles são máximos locais? Quais são mínimos locais? Quais são pontos de sela? Use o gradiente e o determinante $\left| \sm{F_{xx} & F_{xy} \\ F_{yx} & F_{yy}} \right|$ pra descobrir tudo isso. }\anothercol{ \vspace*{0cm} Lembre que $P_2 = (1,2)$. Seja $G(x,y) = (\ga{TFP2})(x,y)$. Seja $B = \{0,...,3\}×\{0,...,6\}$ e $C = \setofst{(x,y)∈B}{y≤6-2x}$. \bsk e) \B (0.5 pts) Calcule o diagrama de numerozinhos da função $F$ nos pontos de $C$. \ssk f) \B (1.0 pts) Calcule o diagrama de numerozinhos da função $G$ nos pontos de $C$. \bsk g) \B (2.5 pts) Use o diagrama de numerozinhos da $F$ que você calculou no item (e) e os gradientes da $F$ nos pontos de $C$ -- que você ainda não calculou, e vai ter que calcular agora -- pra fazer um desenho bem caprichado das curvas de nível da $F$ dentro do triângulo cujos vértices são os pontos $P_1, P_3$ e $P_4$. Você vai precisar reduzir a escala dos vetores gradientes pra que eles não esbarrem uns nos outros -- desenhe $F(x,y) + \frac{1}{10}∇F(x,y)$ para cada ponto de $C$. }} \newpage % «barranco-defs» (to ".barranco-defs") % (c3m242p1p 99 "barranco-defs") % (c3m242p1a "barranco-defs") % (find-angg "GNUPLOT/2024-2-C3-P1.dem") % (find-angg "GNUPLOT/2024-2-C3-P1.dem") % (find-bgprocess "gnuplot ~/GNUPLOT/2024-2-C3-P1.dem") % (find-eepitch-intro "3.3. `eepitch-preprocess-line'") % (setq eepitch-preprocess-regexp "") % (setq eepitch-preprocess-regexp "^%?%L ?") % %%L * (eepitch-lua51) %%L * (eepitch-kill) %%L * (eepitch-lua51) %%L Path.prependtopath "~/LUA/?.lua" %L require "Cabos3" %L require "Numerozinhos1" %L PictBounds.setbounds(v(0,0), v(9,11)) %L %L bigstr1 = [[ %L 6 6 6 6 6 6 6 6 6 6 %L 6 6 6 6 6 6 6 6 6 6 %L 6 6 6 6 6 5 5 5 5 5 %L 6 6 6 6 5 4 4 4 4 4 %L 6 6 6 5 4 3 2 2 2 2 %L 5 5 5 4 3 2 1 0 0 0 %L 4 4 4 3 2 1 0 0 0 0 %L 3 3 3 2 1 0 0 0 0 0 %L 2 2 2 1 0 0 0 0 0 0 %L 1 1 1 0 0 0 0 0 0 0 %L 0 0 0 0 0 0 0 0 0 0 %L 0 0 0 0 0 0 0 0 0 0 %L ]] %L bigstr2 = [[ %L 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 %L | . | . | . | . | . | . | . | . | . | %L 6 - 6 - 6 - 6 - 6 - C - 6 - 6 - 6 - D %L | . | . | . | . | / | . | . | . | . | %L 6 - 6 - 6 - 6 - 6 - 5 - 5 - 5 - 5 - 5 %L | . | . | . | / | . | . | . | . | . | %L 6 - 6 - 6 - 6 - 5 - E - 4 - 4 - 4 - F %L | . | . | / | . | . | \ | . | . | . | %L A - 6 - B - 5 - 4 - 3 - 2 - 2 - 2 - 2 %L | . | . | . | . | . | . | \ | . | . | %L 5 - 5 - 5 - 4 - 3 - 2 - 1 - I - 0 - J %L | . | . | . | . | . | . | / | . | . | %L 4 - 4 - 4 - 3 - 2 - 1 - 0 - 0 - 0 - 0 %L | . | . | . | . | . | / | . | . | . | %L 3 - 3 - 3 - 2 - 1 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | . | / | . | . | . | . | %L 2 - 2 - 2 - 1 - 0 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | / | . | . | . | . | . | %L 1 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 %L | . | . | / | . | . | . | . | . | . | %L G - 0 - H - 0 - 0 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | . | . | . | . | . | . | %L 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 %L ]] %L clabels = CabosNaDiagonal.from(bigstr2) %L lbls = clabels.strgrid:labels() %L spec = lbls:subst("A--B--C--D C--E--I E--F B--H G--H--I--J") %L ns = Numerozinhos.from(0, 0, bigstr1) %L p1 = ns:show0 {u="25pt"}:sa("barranco") %L ns:setspec(spec) %L p2 = ns:show0():sa("barranco 2") %L p3 = Pict { p1, p2 } %L p4 = Pict { p1, p2, [[\ga{barranco} \ga{barranco com linhas}]] } %L p3:output() %L -- p4:output() %%L = p4:show("") %%L = Show.bigstr %%L * (etv) \pu % «questao-1-grids» (to ".questao-1-grids") % (c3m242p1p 4 "questao-1-grids") % (c3m242p1a "questao-1-grids") % (c3m241p1p 5 "questao-1-grids") % (c3m241p1a "questao-1-grids") \def\barra{\scalebox{0.35}{\ga{barranco}}} \def\barras{\barra \quad \barra \quad \barra} $\begin{array}{l} \barras \\ \\[-5pt] \barras \\ \end{array} $ \newpage % «gab-1» (to ".gab-1") % (c3m242p1p 5 "gab-1") % (c3m242p1a "gab-1") {\bf Questão 1: gabarito} \bsk $\scalebox{0.9}{\ga{barranco 2}}$ \newpage % «gab-1-maxima» (to ".gab-1-maxima") % (c3m242p1p 6 "gab-1-maxima") % (c3m242p1a "gab-1-maxima") % (find-es "maxima" "2024.2-C3-P1-Q1-latex") %M (%i1) mkmatrix5(x,xs,y,ys,expr) ::= %M buildq([x,xs,y,ys,expr], %M apply('matrix, %M makelist(makelist(expr,x,xs),y,ys)))$ %M (%i2) /* (1a) */ %M /* (1b) */ %M z_N : 6$ %M (%i3) z_S : 0$ %M (%i4) z_W : y - 1; %M (%o4) y-1 %M (%i5) z_C : y - x + 1; %M (%o5) y-x+1 %M (%i6) z_E : -12 + 2*y; %M (%o6) 2\,y-12 %M (%i7) z_NE : -4 + y; %M (%o7) y-4 %M (%i8) z_MR : min(z_E, z_NE); /* middle right */ %M (%o8) \mathrm{min}\left(y-4 , 2\,y-12\right) %M (%i9) z_M : min(z_W, max(z_C, z_MR)); /* middle */ %M (%o9) \mathrm{min}\left(\mathrm{max}\left(\mathrm{min}\left(y-4 , 2\,y-12\right) , y-x+1\right) , y-1\right) %M (%i10) z : min(z_N, max(z_S, z_M))$ %L maximahead:sa("Q1", "") \pu %M (%i11) mkmatrix5(x,seq(0,9), y,seqby(11,0,-1), [x,y]); %M (%o11) \begin{pmatrix}\left[ 0 , 11 \right] &\left[ 1 , 11 \right] &\left[ 2 , 11 \right] &\left[ 3 , 11 \right] &\left[ 4 , 11 \right] &\left[ 5 , 11 \right] &\left[ 6 , 11 \right] &\left[ 7 , 11 \right] &\left[ 8 , 11 \right] &\left[ 9 , 11 \right] \cr \left[ 0 , 10 \right] &\left[ 1 , 10 \right] &\left[ 2 , 10 \right] &\left[ 3 , 10 \right] &\left[ 4 , 10 \right] &\left[ 5 , 10 \right] &\left[ 6 , 10 \right] &\left[ 7 , 10 \right] &\left[ 8 , 10 \right] &\left[ 9 , 10 \right] \cr \left[ 0 , 9 \right] &\left[ 1 , 9 \right] &\left[ 2 , 9 \right] &\left[ 3 , 9 \right] &\left[ 4 , 9 \right] &\left[ 5 , 9 \right] &\left[ 6 , 9 \right] &\left[ 7 , 9 \right] &\left[ 8 , 9 \right] &\left[ 9 , 9 \right] \cr \left[ 0 , 8 \right] &\left[ 1 , 8 \right] &\left[ 2 , 8 \right] &\left[ 3 , 8 \right] &\left[ 4 , 8 \right] &\left[ 5 , 8 \right] &\left[ 6 , 8 \right] &\left[ 7 , 8 \right] &\left[ 8 , 8 \right] &\left[ 9 , 8 \right] \cr \left[ 0 , 7 \right] &\left[ 1 , 7 \right] &\left[ 2 , 7 \right] &\left[ 3 , 7 \right] &\left[ 4 , 7 \right] &\left[ 5 , 7 \right] &\left[ 6 , 7 \right] &\left[ 7 , 7 \right] &\left[ 8 , 7 \right] &\left[ 9 , 7 \right] \cr \left[ 0 , 6 \right] &\left[ 1 , 6 \right] &\left[ 2 , 6 \right] &\left[ 3 , 6 \right] &\left[ 4 , 6 \right] &\left[ 5 , 6 \right] &\left[ 6 , 6 \right] &\left[ 7 , 6 \right] &\left[ 8 , 6 \right] &\left[ 9 , 6 \right] \cr \left[ 0 , 5 \right] &\left[ 1 , 5 \right] &\left[ 2 , 5 \right] &\left[ 3 , 5 \right] &\left[ 4 , 5 \right] &\left[ 5 , 5 \right] &\left[ 6 , 5 \right] &\left[ 7 , 5 \right] &\left[ 8 , 5 \right] &\left[ 9 , 5 \right] \cr \left[ 0 , 4 \right] &\left[ 1 , 4 \right] &\left[ 2 , 4 \right] &\left[ 3 , 4 \right] &\left[ 4 , 4 \right] &\left[ 5 , 4 \right] &\left[ 6 , 4 \right] &\left[ 7 , 4 \right] &\left[ 8 , 4 \right] &\left[ 9 , 4 \right] \cr \left[ 0 , 3 \right] &\left[ 1 , 3 \right] &\left[ 2 , 3 \right] &\left[ 3 , 3 \right] &\left[ 4 , 3 \right] &\left[ 5 , 3 \right] &\left[ 6 , 3 \right] &\left[ 7 , 3 \right] &\left[ 8 , 3 \right] &\left[ 9 , 3 \right] \cr \left[ 0 , 2 \right] &\left[ 1 , 2 \right] &\left[ 2 , 2 \right] &\left[ 3 , 2 \right] &\left[ 4 , 2 \right] &\left[ 5 , 2 \right] &\left[ 6 , 2 \right] &\left[ 7 , 2 \right] &\left[ 8 , 2 \right] &\left[ 9 , 2 \right] \cr \left[ 0 , 1 \right] &\left[ 1 , 1 \right] &\left[ 2 , 1 \right] &\left[ 3 , 1 \right] &\left[ 4 , 1 \right] &\left[ 5 , 1 \right] &\left[ 6 , 1 \right] &\left[ 7 , 1 \right] &\left[ 8 , 1 \right] &\left[ 9 , 1 \right] \cr \left[ 0 , 0 \right] &\left[ 1 , 0 \right] &\left[ 2 , 0 \right] &\left[ 3 , 0 \right] &\left[ 4 , 0 \right] &\left[ 5 , 0 \right] &\left[ 6 , 0 \right] &\left[ 7 , 0 \right] &\left[ 8 , 0 \right] &\left[ 9 , 0 \right] \cr \end{pmatrix} %M (%i12) mkmatrix5(x,seq(0,8), y,seqby(11,0,-1), ''z); %M (%o12) \begin{pmatrix}6&6&6&6&6&6&6&6&6\cr 6&6&6&6&6&6&6&6&6\cr 6&6&6&6&6&5&5&5&5\cr 6&6&6&6&5&4&4&4&4\cr 6&6&6&5&4&3&2&2&2\cr 5&5&5&4&3&2&1&0&0\cr 4&4&4&3&2&1&0&0&0\cr 3&3&3&2&1&0&0&0&0\cr 2&2&2&1&0&0&0&0&0\cr 1&1&1&0&0&0&0&0&0\cr 0&0&0&0&0&0&0&0&0\cr 0&0&0&0&0&0&0&0&0\cr \end{pmatrix} %M (%i13) /* %M plot3d (z, [x,0,8], [y,0,11]); %M */ %L maximahead:sa("Q1 2", "") \pu %M (%i13) /* (1c) */ %M [zr_=z_C, zr_=z_E]; %M (%o13) \left[ \mathrm{zr\_}=y-x+1 , \mathrm{zr\_}=2\,y-12 \right] %M (%i14) solve([zr_=z_C, zr_=z_E], [y,zr_]); %M (%o14) \left[ \left[ y=13-x , \mathrm{zr\_}=14-2\,x \right] \right] %M (%i15) eqc : solve([zr_=z_C, zr_=z_E], [y,zr_])[1]; %M (%o15) \left[ y=13-x , \mathrm{zr\_}=14-2\,x \right] %M (%i16) define(yr_(x), subst(eqc, y)); %M (%o16) \mathrm{yr\_}\left(x\right):=13-x %M (%i17) define(zr_(x), subst(eqc, zr_)); %M (%o17) \mathrm{zr\_}\left(x\right):=14-2\,x %M (%i18) xyzr(x) := [x, yr_(x), zr_(x)]; %M (%o18) \mathrm{xyzr}\left(x\right):=\left[ x , \mathrm{yr\_}\left(x\right) , \mathrm{zr\_}\left(x\right) \right] %M (%i19) xyzr_top : rhs(fundef(xyzr)); %M (%o19) \left[ x , \mathrm{yr\_}\left(x\right) , \mathrm{zr\_}\left(x\right) \right] %L maximahead:sa("Q1 3", "") \pu %M (%i20) xyzr_lines : makelist(xyzr(x), x,2,9); %M (%o20) \left[ \left[ 2 , 11 , 10 \right] , \left[ 3 , 10 , 8 \right] , \left[ 4 , 9 , 6 \right] , \left[ 5 , 8 , 4 \right] , \left[ 6 , 7 , 2 \right] , \left[ 7 , 6 , 0 \right] , \left[ 8 , 5 , -2 \right] , \left[ 9 , 4 , -4 \right] \right] %M (%i21) apply('matrix, append([xyzr_top], xyzr_lines)); %M (%o21) \begin{pmatrix}x&\mathrm{yr\_}\left(x\right)&\mathrm{zr\_}\left(x\right)\cr 2&11&10\cr 3&10&8\cr 4&9&6\cr 5&8&4\cr 6&7&2\cr 7&6&0\cr 8&5&-2\cr 9&4&-4\cr \end{pmatrix} %M (%i22) /* (1d) */ %M [x, yr_(x), zr_(x)]; %M (%o22) \left[ x , 13-x , 14-2\,x \right] %L maximahead:sa("Q1 4", "") \pu %M (%i23) /* (1e) */ %M define(z(x,y), z); %M (%o23) z\left(x , y\right):=\mathrm{min}\left(6 , \mathrm{max}\left(0 , \mathrm{min}\left(\mathrm{max}\left(\mathrm{min}\left(y-4 , 2\,y-12\right) , y-x+1\right) , y-1\right)\right)\right) %M (%i24) eps : 1/4; %M (%o24) {\frac{1}{4}} %M (%i25) z_xr (x,y) := (z(x+eps,y)-z(x,y))/ eps; %M (%o25) \mathrm{z\_xr}\left(x , y\right):={\frac{z\left(x+\mathrm{eps} , y\right)-z\left(x , y\right)}{\mathrm{eps}}} %M (%i26) z_xl (x,y) := (z(x-eps,y)-z(x,y))/-eps; %M (%o26) \mathrm{z\_xl}\left(x , y\right):={\frac{z\left(x-\mathrm{eps} , y\right)-z\left(x , y\right)}{-\mathrm{eps}}} %M (%i27) z_yu (x,y) := (z(x,y+eps)-z(x,y))/ eps; %M (%o27) \mathrm{z\_yu}\left(x , y\right):={\frac{z\left(x , y+\mathrm{eps}\right)-z\left(x , y\right)}{\mathrm{eps}}} %M (%i28) z_yd (x,y) := (z(x,y-eps)-z(x,y))/-eps; %M (%o28) \mathrm{z\_yd}\left(x , y\right):={\frac{z\left(x , y-\mathrm{eps}\right)-z\left(x , y\right)}{-\mathrm{eps}}} %M (%i29) gradz(x,y) := if (z_xr(x,y) = z_xl(x,y)) and %M (z_yu(x,y) = z_yd(x,y)) %M then [z_xr(x,y), z_yu(x,y)] %M else "X"$ %L maximahead:sa("Q1 5", "") \pu %M (%i30) mkmatrix5(x,seq(0,8), y,seqby(11,0,-1), gradz(x,y)); %M (%o30) \begin{pmatrix}\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\mbox{ X }&\mbox{ X }&\mbox{ X }\cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\mbox{ X }&\left[ 0 , 1 \right] &\left[ 0 , 1 \right] &\left[ 0 , 1 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\left[ -1 , 1 \right] &\mbox{ X }&\mbox{ X }&\mbox{ X }&\mbox{ X }\cr \mbox{ X }&\mbox{ X }&\mbox{ X }&\left[ -1 , 1 \right] &\left[ -1 , 1 \right] &\left[ -1 , 1 \right] &\mbox{ X }&\left[ 0 , 2 \right] &\left[ 0 , 2 \right] \cr \left[ 0 , 1 \right] &\left[ 0 , 1 \right] &\mbox{ X }&\left[ -1 , 1 \right] &\left[ -1 , 1 \right] &\left[ -1 , 1 \right] &\left[ -1 , 1 \right] &\mbox{ X }&\mbox{ X }\cr \left[ 0 , 1 \right] &\left[ 0 , 1 \right] &\mbox{ X }&\left[ -1 , 1 \right] &\left[ -1 , 1 \right] &\left[ -1 , 1 \right] &\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 1 \right] &\left[ 0 , 1 \right] &\mbox{ X }&\left[ -1 , 1 \right] &\left[ -1 , 1 \right] &\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 1 \right] &\left[ 0 , 1 \right] &\mbox{ X }&\left[ -1 , 1 \right] &\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 1 \right] &\left[ 0 , 1 \right] &\mbox{ X }&\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \mbox{ X }&\mbox{ X }&\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \end{pmatrix} %M (%i31) %M /* (1f) */ %M [xmin,xmax, ymin,ymax] : [0,9, 0,7]; %M (%o31) \left[ 0 , 9 , 0 , 7 \right] %M (%i32) Q(t) := [0,2] + t*[1,1]; %M (%o32) Q\left(t\right):=\left[ 0 , 2 \right] +t\,\left[ 1 , 1 \right] %M (%i33) define(xQ(t), Q(t)[1]); %M (%o33) \mathrm{xQ}\left(t\right):=t %M (%i34) define(yQ(t), Q(t)[2]); %M (%o34) \mathrm{yQ}\left(t\right):=t+2 %M (%i35) [x=xQ(t),x=yQ(t)]; %M (%o35) \left[ x=t , x=t+2 \right] %L maximahead:sa("Q1 6", "") \pu %M (%i36) define(h(t), at(z, [x=xQ(t),y=yQ(t)])); %M (%o36) h\left(t\right):=\mathrm{min}\left(6 , \mathrm{max}\left(0 , \mathrm{min}\left(\mathrm{max}\left(3 , \mathrm{min}\left(t-2 , 2\,\left(t+2\right)-12\right)\right) , t+1\right)\right)\right) %M (%i37) myqdrawp(xyrange(), myex1(h(x), lc(red))); %M (%o37) \myvcenter{\includegraphics[height=5cm]{2024-2-C3/P1-Q1_001.pdf}} %M (%i38) %L maximahead:sa("Q1 7", "") \pu % «gab-1-p2» (to ".gab-1-p2") % (c3m242p1p 8 "gab-1-p2") % (c3m242p1a "gab-1-p2") {\bf Questão 1: gabarito (2)} \scalebox{0.4}{\def\colwidth{13cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q1} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q1 2} }} \newpage % «gab-1-p3» (to ".gab-1-p3") % (c3m242p1p 9 "gab-1-p3") % (c3m242p1a "gab-1-p3") {\bf Questão 1: gabarito (3)} \scalebox{0.4}{\def\colwidth{12cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q1 3} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q1 4} }} \newpage % «gab-1-p4» (to ".gab-1-p4") % (c3m242p1p 10 "gab-1-p4") % (c3m242p1a "gab-1-p4") {\bf Questão 1: gabarito (4)} \scalebox{0.38}{\def\colwidth{14cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q1 5} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q1 6} }} \newpage % «gab-1-p5» (to ".gab-1-p5") % (c3m242p1p 11 "gab-1-p5") % (c3m242p1a "gab-1-p5") {\bf Questão 1: gabarito (5)} \scalebox{0.4}{\def\colwidth{14cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q1 7} }\anothercol{ }} \newpage %M (%i1) mkmatrix5(x,xs,y,ys,expr) ::= %M buildq([x,xs,y,ys,expr], %M apply('matrix, %M makelist(makelist(expr,x,xs),y,ys)))$ %M (%i2) %M /* Algumas definicoes */ %M gradef(W (x,y), W_x (x,y), W_y (x,y))$ %M (%i3) gradef(W_x(x,y), W_xx(x,y), W_xy(x,y))$ %M (%i4) gradef(W_y(x,y), W_xy(x,y), W_yy(x,y))$ %M (%i5) diff6(F) := [F, %M diff(F,x), diff(F,y), %M diff(F,x,2), diff(F,x,1,y,1), diff(F,y,2)]$ %M (%i6) M6_(a,b,c,d,e,f) := matrix([a,"",""], [b,c,""], [d,e,f])$ %M (%i7) T6_(a,b,c,d,e,f) := a + b*Dx + c*Dy + d*Dx^2/2 + e*Dx*Dy + f*Dy^2$ %M (%i8) M6 (abcdef) := apply('M6_, abcdef)$ %M (%i9) T6 (abcdef) := apply('T6_, abcdef)$ %M (%i10) atxy(expr,x0y0) := at(expr, [x=x0y0[1], y=x0y0[2]])$ %M (%i11) D2(F) := M6(diff6(F))$ %M (%i12) T2(x0y0,F) := T6(atxy(diff6(F),x0y0))$ %M (%i13) DxDyat(x0y0) := [Dx=x-x0y0[1], Dy=y-x0y0[2]]$ %M (%i14) T2exp(x0y0,F) := subst(DxDyat(x0y0), T2(x0y0,F))$ %M %M (%i15) %M M6_ (1,2,3,4,5,6); %M (%o15) \begin{pmatrix}1&&\cr 2&3&\cr 4&5&6\cr \end{pmatrix} %M (%i16) M6 ([1,2,3,4,5,6]); %M (%o16) \begin{pmatrix}1&&\cr 2&3&\cr 4&5&6\cr \end{pmatrix} %L maximahead:sa("Q2", "") \pu %M (%i17) D2(W(x,y)); %M (%o17) \begin{pmatrix}W\left(x , y\right)&&\cr \mathrm{W\_x}\left(x , y\right)&\mathrm{W\_y}\left(x , y\right)&\cr \mathrm{W\_xx}\left(x , y\right)&\mathrm{W\_xy}\left(x , y\right)&\mathrm{W\_yy}\left(x , y\right)\cr \end{pmatrix} %M (%i18) diff6(W(x,y)); %M (%o18) \left[ W\left(x , y\right) , \mathrm{W\_x}\left(x , y\right) , \mathrm{W\_y}\left(x , y\right) , \mathrm{W\_xx}\left(x , y\right) , \mathrm{W\_xy}\left(x , y\right) , \mathrm{W\_yy}\left(x , y\right) \right] %M (%i19) atxy(diff6(W(x,y)),[x0,y0]); %M (%o19) \left[ W\left(\mathrm{x0} , \mathrm{y0}\right) , \mathrm{W\_x}\left(\mathrm{x0} , \mathrm{y0}\right) , \mathrm{W\_y}\left(\mathrm{x0} , \mathrm{y0}\right) , \mathrm{W\_xx}\left(\mathrm{x0} , \mathrm{y0}\right) , \mathrm{W\_xy}\left(\mathrm{x0} , \mathrm{y0}\right) , \mathrm{W\_yy}\left(\mathrm{x0} , \mathrm{y0}\right) \right] %M (%i20) DxDyat([3,4]); %M (%o20) \left[ \mathrm{Dx}=x-3 , \mathrm{Dy}=y-4 \right] %M (%i21) T2 ([3,4],W(x,y)); %M (%o21) \scalebox{0.7}{$\mathrm{W\_yy}\left(3 , 4\right)\,\mathrm{Dy}^2+\mathrm{W\_xy}\left(3 , 4\right)\,\mathrm{Dx}\,\mathrm{Dy}+\mathrm{W\_y}\left(3 , 4\right)\,\mathrm{Dy}+{\frac{\mathrm{W\_xx}\left(3 , 4\right)\,\mathrm{Dx}^2}{2}}+\mathrm{W\_x}\left(3 , 4\right)\,\mathrm{Dx}+W\left(3 , 4\right)$} %M (%i22) T2exp ([3,4],W(x,y)); %M (%o22) \scalebox{0.7}{$\mathrm{W\_xy}\left(3 , 4\right)\,\left(x-3\right)\,\left(y-4\right)+\mathrm{W\_y}\left(3 , 4\right)\,\left(y-4\right)+\mathrm{W\_yy}\left(3 , 4\right)\,\left(y-4\right)^2+\mathrm{W\_x}\left(3 , 4\right)\,\left(x-3\right)+{\frac{\mathrm{W\_xx}\left(3 , 4\right)\,\left(x-3\right)^2}{2}}+W\left(3 , 4\right)$} %L maximahead:sa("Q2 2", "") \pu %M (%i23) F : x*y*(6 -2*x -y); %M (%o23) x\,\left(-y-2\,x+6\right)\,y %M (%i24) F : expand(F); %M (%o24) -\left(x\,y^2\right)-2\,x^2\,y+6\,x\,y %M (%i25) P1 : [0,6]$ %M (%i26) P2 : [1,2]$ %M (%i27) P3 : [3,0]$ %M (%i28) P4 : [0,0]$ %M (%i29) %M /* (2a) */ %M D2F : D2(F); %M (%o29) \begin{pmatrix}-\left(x\,y^2\right)-2\,x^2\,y+6\,x\,y&&\cr -y^2-4\,x\,y+6\,y&-\left(2\,x\,y\right)-2\,x^2+6\,x&\cr -\left(4\,y\right)&-\left(2\,y\right)-4\,x+6&-\left(2\,x\right)\cr \end{pmatrix} %M (%i30) %M /* (2b) */ %M D2FP1 : atxy(D2(F),P1); %M (%o30) \begin{pmatrix}0&&\cr 0&0&\cr -24&-6&0\cr \end{pmatrix} %M (%i31) D2FP2 : atxy(D2(F),P2); %M (%o31) \begin{pmatrix}4&&\cr 0&0&\cr -8&-2&-2\cr \end{pmatrix} %M (%i32) D2FP3 : atxy(D2(F),P3); %M (%o32) \begin{pmatrix}0&&\cr 0&0&\cr 0&-6&-6\cr \end{pmatrix} %M (%i33) D2FP4 : atxy(D2(F),P4); %M (%o33) \begin{pmatrix}0&&\cr 0&0&\cr 0&6&0\cr \end{pmatrix} %L maximahead:sa("Q2 3", "") \pu %M (%i34) /* (2c) */ %M T2(P1,F); %M (%o34) -\left(6\,\mathrm{Dx}\,\mathrm{Dy}\right)-12\,\mathrm{Dx}^2 %M (%i35) T2(P2,F); %M (%o35) -\left(2\,\mathrm{Dy}^2\right)-2\,\mathrm{Dx}\,\mathrm{Dy}-4\,\mathrm{Dx}^2+4 %M (%i36) T2(P3,F); %M (%o36) -\left(6\,\mathrm{Dy}^2\right)-6\,\mathrm{Dx}\,\mathrm{Dy} %M (%i37) T2(P4,F); %M (%o37) 6\,\mathrm{Dx}\,\mathrm{Dy} %M (%i38) %M /* (2d) */ %M grad(F) := [diff(F,x),diff(F,y)]$ %M (%i39) H(F) := hessian(F, [x,y])$ %M (%i40) detH(F) := determinant(H(F))$ %M (%i41) crit(F) := [F, grad(F), H(F), detH(F)]$ %M %M (%i42) crit(W(x,y)); %M (%o42) \scalebox{0.7}{$\left[ W\left(x , y\right) , \left[ \mathrm{W\_x}\left(x , y\right) , \mathrm{W\_y}\left(x , y\right) \right] , \begin{pmatrix}\mathrm{W\_xx}\left(x , y\right)&\mathrm{W\_xy}\left(x , y\right)\cr \mathrm{W\_xy}\left(x , y\right)&\mathrm{W\_yy}\left(x , y\right)\cr \end{pmatrix} , \mathrm{W\_xx}\left(x , y\right)\,\mathrm{W\_yy}\left(x , y\right)-\mathrm{W\_xy}\left(x , y\right)^2 \right]$} %M (%i43) atxy(crit(F), P1); %M (%o43) \left[ 0 , \left[ 0 , 0 \right] , \begin{pmatrix}-24&-6\cr -6&0\cr \end{pmatrix} , -36 \right] %M (%i44) atxy(crit(F), P2); %M (%o44) \left[ 4 , \left[ 0 , 0 \right] , \begin{pmatrix}-8&-2\cr -2&-2\cr \end{pmatrix} , 12 \right] %M (%i45) atxy(crit(F), P3); %M (%o45) \left[ 0 , \left[ 0 , 0 \right] , \begin{pmatrix}0&-6\cr -6&-6\cr \end{pmatrix} , -36 \right] %M (%i46) atxy(crit(F), P4); %M (%o46) \left[ 0 , \left[ 0 , 0 \right] , \begin{pmatrix}0&6\cr 6&0\cr \end{pmatrix} , -36 \right] %L maximahead:sa("Q2 4", "") \pu %M (%i47) %M /* (2e), preparacao */ %M F; %M (%o47) -\left(x\,y^2\right)-2\,x^2\,y+6\,x\,y %M (%i48) T2 (P2,F); %M (%o48) -\left(2\,\mathrm{Dy}^2\right)-2\,\mathrm{Dx}\,\mathrm{Dy}-4\,\mathrm{Dx}^2+4 %M (%i49) G : T2exp(P2,F); %M (%o49) -\left(2\,\left(x-1\right)\,\left(y-2\right)\right)-2\,\left(y-2\right)^2-4\,\left(x-1\right)^2+4 %M (%i50) G : expand(G); %M (%o50) -\left(2\,y^2\right)-2\,x\,y+10\,y-4\,x^2+12\,x-12 %M (%i51) %M atxy(D2(F),P2); %M (%o51) \begin{pmatrix}4&&\cr 0&0&\cr -8&-2&-2\cr \end{pmatrix} %M (%i52) atxy(D2(G),P2); %M (%o52) \begin{pmatrix}4&&\cr 0&0&\cr -8&-2&-4\cr \end{pmatrix} %M (%i53) %M numsB(expr) := %M apply(matrix, %M makelist(makelist(ev(expr), x,0,3), %M y, seqby(6,0,-1)))$ %M %M (%i54) numsB([x,y]); %M (%o54) \begin{pmatrix}\left[ 0 , 6 \right] &\left[ 1 , 6 \right] &\left[ 2 , 6 \right] &\left[ 3 , 6 \right] \cr \left[ 0 , 5 \right] &\left[ 1 , 5 \right] &\left[ 2 , 5 \right] &\left[ 3 , 5 \right] \cr \left[ 0 , 4 \right] &\left[ 1 , 4 \right] &\left[ 2 , 4 \right] &\left[ 3 , 4 \right] \cr \left[ 0 , 3 \right] &\left[ 1 , 3 \right] &\left[ 2 , 3 \right] &\left[ 3 , 3 \right] \cr \left[ 0 , 2 \right] &\left[ 1 , 2 \right] &\left[ 2 , 2 \right] &\left[ 3 , 2 \right] \cr \left[ 0 , 1 \right] &\left[ 1 , 1 \right] &\left[ 2 , 1 \right] &\left[ 3 , 1 \right] \cr \left[ 0 , 0 \right] &\left[ 1 , 0 \right] &\left[ 2 , 0 \right] &\left[ 3 , 0 \right] \cr \end{pmatrix} %L maximahead:sa("Q2 5", "") \pu %M (%i55) %M /* (2e) */ %M numsB(F); %M (%o55) \begin{pmatrix}0&-12&-48&-108\cr 0&-5&-30&-75\cr 0&0&-16&-48\cr 0&3&-6&-27\cr 0&4&0&-12\cr 0&3&2&-3\cr 0&0&0&0\cr \end{pmatrix} %M (%i56) %M /* (2f) */ %M numsB(G); %M (%o56) \begin{pmatrix}-24&-28&-40&-60\cr -12&-14&-24&-42\cr -4&-4&-12&-28\cr 0&2&-4&-18\cr 0&4&0&-12\cr -4&2&0&-10\cr -12&-4&-4&-12\cr \end{pmatrix} %M (%i57) %M /* (2g) */ %M [xmin,ymin, xmax,ymax] : [-1,-1, 4,7]$ %M %M (%i58) level(zz,color) := myimp1(F=zz, lc(color), lk(z=zz))$ %M (%i59) levels() := [level( 3.95, gray), %M level( 3.90, gray), %M level( 3.85, gray), %M level( 3, red), %M level( 2, orange), %M level( 1, gold), %M level( 0, forest_green), %M level(-1, blue)]$ %L maximahead:sa("Q2 6", "") \pu %M (%i60) %M /* As curvas de nivel da F, sem os vetores gradientes: */ %M level(zz,color) := myimp1(F=zz, lc(color), lk(z=zz))$ %M %M (%i61) myqdrawp(xyrange(), levels()); %M (%o61) \myvcenter{\includegraphics[height=8cm]{2024-2-C3/P1-Q2_001.pdf}} %M (%i62) %M /* As curvas de nivel da G, sem os vetores gradientes: */ %M level(zz,color) := myimp1(G=zz, lc(color), lk(z=zz))$ %M %M (%i63) myqdrawp(xyrange(), levels()); %M (%o63) \myvcenter{\includegraphics[height=8cm]{2024-2-C3/P1-Q2_002.pdf}} %L maximahead:sa("Q2 7", "") \pu %M (%i64) /* Os conjuntos B e C: */ %M B : create_list([x,y], y,seqby(6,0,-1), x,seq(0,3)); %M (%o64) \scalebox{0.5}{$\left[ \left[ 0 , 6 \right] , \left[ 1 , 6 \right] , \left[ 2 , 6 \right] , \left[ 3 , 6 \right] , \left[ 0 , 5 \right] , \left[ 1 , 5 \right] , \left[ 2 , 5 \right] , \left[ 3 , 5 \right] , \left[ 0 , 4 \right] , \left[ 1 , 4 \right] , \left[ 2 , 4 \right] , \left[ 3 , 4 \right] , \left[ 0 , 3 \right] , \left[ 1 , 3 \right] , \left[ 2 , 3 \right] , \left[ 3 , 3 \right] , \left[ 0 , 2 \right] , \left[ 1 , 2 \right] , \left[ 2 , 2 \right] , \left[ 3 , 2 \right] , \left[ 0 , 1 \right] , \left[ 1 , 1 \right] , \left[ 2 , 1 \right] , \left[ 3 , 1 \right] , \left[ 0 , 0 \right] , \left[ 1 , 0 \right] , \left[ 2 , 0 \right] , \left[ 3 , 0 \right] \right]$} %M (%i65) eq1 : y = 6 - 2*x; %M (%o65) y=6-2\,x %M (%i66) eq2 : solve(eq1,x); %M (%o66) \left[ x=-\left({\frac{y-6}{2}}\right) \right] %M (%i67) subst(eq2, x); %M (%o67) -\left({\frac{y-6}{2}}\right) %M (%i68) define(xmaxC(y), subst(eq2, x)); %M (%o68) \mathrm{xmaxC}\left(y\right):=-\left({\frac{y-6}{2}}\right) %M (%i69) C : create_list([x,y], y,seqby(6,0,-1), x,seq(0,xmaxC(y))); %M (%o69) \left[ \left[ 0 , 6 \right] , \left[ 0 , 5 \right] , \left[ 0 , 4 \right] , \left[ 1 , 4 \right] , \left[ 0 , 3 \right] , \left[ 1 , 3 \right] , \left[ 0 , 2 \right] , \left[ 1 , 2 \right] , \left[ 2 , 2 \right] , \left[ 0 , 1 \right] , \left[ 1 , 1 \right] , \left[ 2 , 1 \right] , \left[ 0 , 0 \right] , \left[ 1 , 0 \right] , \left[ 2 , 0 \right] , \left[ 3 , 0 \right] \right] %M (%i70) %M [myqdrawp(xyrange(), pts(B, pc(red), myps(3))), %M myqdrawp(xyrange(), pts(C, pc(red), myps(3)))]; %M (%o70) \left[ \myvcenter{\includegraphics[height=5cm]{2024-2-C3/P1-Q2_003.pdf}} , \myvcenter{\includegraphics[height=5cm]{2024-2-C3/P1-Q2_004.pdf}} \right] %L maximahead:sa("Q2 8", "") \pu %M (%i71) /* O gradiente da F nos pontos de B: */ %M numsB( grad(F) ); %M (%o71) \begin{pmatrix}\left[ 0 , 0 \right] &\left[ -24 , -8 \right] &\left[ -48 , -20 \right] &\left[ -72 , -36 \right] \cr \left[ 5 , 0 \right] &\left[ -15 , -6 \right] &\left[ -35 , -16 \right] &\left[ -55 , -30 \right] \cr \left[ 8 , 0 \right] &\left[ -8 , -4 \right] &\left[ -24 , -12 \right] &\left[ -40 , -24 \right] \cr \left[ 9 , 0 \right] &\left[ -3 , -2 \right] &\left[ -15 , -8 \right] &\left[ -27 , -18 \right] \cr \left[ 8 , 0 \right] &\left[ 0 , 0 \right] &\left[ -8 , -4 \right] &\left[ -16 , -12 \right] \cr \left[ 5 , 0 \right] &\left[ 1 , 2 \right] &\left[ -3 , 0 \right] &\left[ -7 , -6 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 4 \right] &\left[ 0 , 4 \right] &\left[ 0 , 0 \right] \cr \end{pmatrix} %M (%i72) numsB(atxy(grad(F),[x,y])); %M (%o72) \begin{pmatrix}\left[ 0 , 0 \right] &\left[ -24 , -8 \right] &\left[ -48 , -20 \right] &\left[ -72 , -36 \right] \cr \left[ 5 , 0 \right] &\left[ -15 , -6 \right] &\left[ -35 , -16 \right] &\left[ -55 , -30 \right] \cr \left[ 8 , 0 \right] &\left[ -8 , -4 \right] &\left[ -24 , -12 \right] &\left[ -40 , -24 \right] \cr \left[ 9 , 0 \right] &\left[ -3 , -2 \right] &\left[ -15 , -8 \right] &\left[ -27 , -18 \right] \cr \left[ 8 , 0 \right] &\left[ 0 , 0 \right] &\left[ -8 , -4 \right] &\left[ -16 , -12 \right] \cr \left[ 5 , 0 \right] &\left[ 1 , 2 \right] &\left[ -3 , 0 \right] &\left[ -7 , -6 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 4 \right] &\left[ 0 , 4 \right] &\left[ 0 , 0 \right] \cr \end{pmatrix} %M (%i73) %M /* O gradiente da F nos pontos de C: */ %M define(v_at (xy), atxy(grad(F)/10,xy))$ %M %M (%i74) define(Pv_at(xy), myPv(xy,v_at(xy),[ps(1)],hl(0.15)))$ %M %M (%i75) Pv_at([1,3]); %M (%o75) \left[ \mathrm{pts}\left(\left[ \left[ 1 , 3 \right] \right] , \mathrm{ps}\left(1\right)\right) , \mathrm{vector}\left(\left[ 1 , 3 \right] , \left[ -\left({\frac{3}{10}}\right) , -\left({\frac{1}{5}}\right) \right] , \mathrm{hl}\left(0.15\right)\right) \right] %M (%i76) grads_at_C : makelist(Pv_at(xy), xy, C)$ %L maximahead:sa("Q2 9", "") \pu %M (%i77) myqdrawp(xyrange(), grads_at_C); %M (%o77) \myvcenter{\includegraphics[height=5cm]{2024-2-C3/P1-Q2_005.pdf}} %M (%i78) %M /* O gradiente da F nos pontos de C e as curvas de nivel: */ %M level(zz,color) := myimp1(F=zz, lc(color), lk(z=zz))$ %M %M (%i79) myqdrawp(xyrange(), levels(), grads_at_C); %M (%o79) \myvcenter{\includegraphics[height=5cm]{2024-2-C3/P1-Q2_006.pdf}} %M (%i80) %L maximahead:sa("Q2 10", "") \pu {\bf Questão 2: gabarito} \scalebox{0.35}{\def\colwidth{16cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 2} }} \newpage {\bf Questão 2: gabarito (2)} \scalebox{0.3}{\def\colwidth{16cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 3} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 4} }} \newpage {\bf Questão 2: gabarito (3)} \scalebox{0.3}{\def\colwidth{16cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 5} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 6} }} \newpage {\bf Questão 2: gabarito (3)} \scalebox{0.3}{\def\colwidth{16cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 7} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 8} }} \newpage {\bf Questão 2: gabarito (4)} \scalebox{0.3}{\def\colwidth{16cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 9} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{Q2 10} }} \newpage \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % (find-pdfpages2-links "~/LATEX/" "2024-2-C3-P1") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) mygr () { grep 'c3m.*\(p1\|p2\|vr\|vs\)' ~/blogme3/code-etex-tlas.lua; } myawk () { awk -F '"' '{print "(" $2 "p)" }'; } mygr | myawk % (c3m201p2p) % (c3m202p1p) % (c3m202p2p) % (c3m211p1p) % (c3m211p2p) % (c3m212p1p) % (c3m212p2p) % (c3m212vsp) % (c3m221p1p) % (c3m221p2p) % (c3m221vrp) % (c3m221vsp) % (c3m221vsbp) % (c3m222dicasp1p) % (c3m222p1p) % (c3m222dicasp2p) % (c3m222p2p) % (c3m222vrp) % (c3m222vsp) % (c3m232dicasp1p) % (c3m232p1p) % (c3m232dicasp2p) % (c3m232p2p) % (c3m241rp1p) % (c3m241dicasp1p) % (c3m241p1p) % (c3m241p2p) % (c3m241vrp1p) % (c3m241vrp2p) % (c3m241vsp) % (c3m242dicasp1p) (c3m201p2p) (c3m202p1p) (c3m202p2p) (c3m211p1p) (c3m211p2p) (c3m212p1p) (c3m212p2p) (c3m212vsp) (c3m221p1p) (c3m221p2p) (c3m221vrp) (c3m221vsp) (c3m221vsbp) (c3m222dicasp1p) (c3m222p1p) (c3m222dicasp2p) (c3m222p2p) (c3m222vrp) (c3m222vsp) (c3m232dicasp1p) (c3m232p1p) (c3m232dicasp2p) (c3m232p2p) (c3m241rp1p) (c3m241dicasp1p) (c3m241p1p) (c3m241p2p) (c3m241vrp1p) (c3m241vrp2p) (c3m241vsp) (c3m242dicasp1p) % Local Variables: % coding: utf-8-unix % ee-tla: "c3p1" % ee-tla: "c3m242p1" % End: