Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2024-1-C2-int-indefinida.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2024-1-C2-int-indefinida.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2024-1-C2-int-indefinida.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2024-1-C2-int-indefinida.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2024-1-C2-int-indefinida.pdf")) % (defun e () (interactive) (find-LATEX "2024-1-C2-int-indefinida.tex")) % (defun o () (interactive) (find-LATEX "2024-1-C2-int-indefinida.tex")) % (defun u () (interactive) (find-latex-upload-links "2024-1-C2-int-indefinida")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2024-1-C2-int-indefinida.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2024-1-C2-int-indefinida") % (find-pdf-page "~/LATEX/2024-1-C2-int-indefinida.pdf") % (find-sh0 "cp -v ~/LATEX/2024-1-C2-int-indefinida.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2024-1-C2-int-indefinida.pdf /tmp/pen/") % (find-xournalpp "/tmp/2024-1-C2-int-indefinida.pdf") % file:///home/edrx/LATEX/2024-1-C2-int-indefinida.pdf % file:///tmp/2024-1-C2-int-indefinida.pdf % file:///tmp/pen/2024-1-C2-int-indefinida.pdf % http://anggtwu.net/LATEX/2024-1-C2-int-indefinida.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2 Maxima2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2") % (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2") % (find-MM-aula-links "2024-1-C2-int-indefinida" "2" "c2m241ii" "c2ii") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-maxima» (to "defs-maxima") % «.defs-rednames» (to "defs-rednames") % «.title» (to "title") % «.links» (to "links") % «.links-int-indef» (to "links-int-indef") % «.links-int-partes» (to "links-int-partes") % % «.int-indefinida» (to "int-indefinida") % % «.r-quociente» (to "r-quociente") % «.tr-igualdade» (to "tr-igualdade") % «.42-99» (to "42-99") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2024-1-C2.pdf} \def\drafturl{http://anggtwu.net/2024.1-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2024-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2024-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L --dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs-maxima» (to ".defs-maxima") %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") \pu % «defs-rednames» (to ".defs-rednames") % (c2m241exsubstp 6 "defs-rednames") % (c2m241exsubsta "defs-rednames") \def\redname#1{{\color{Red3}\text{#1}}} \sa {RC}{\redname{[RC]}} \sa {RCL}{\redname{[RCL]}} \sa {II}{\redname{[II]}} \sa {TFC2}{\redname{[TFC2]}} \sa{defdif}{\redname{[defdif]}} \sa {4}{\redname{[4]}} \sa {5}{\redname{[5]}} \sa {6}{\redname{[6]}} \sa {7}{\redname{[7]}} \sa {8}{\redname{[8]}} \sa {II}{\redname{[II]}} \sa {IIC}{\redname{[IIC]}} \sa {S1}{\redname{[S${}_1$]}} \def\bigeq#1{\Bigl(#1\Bigr)} \def\bigeq#1{\Bigl(#1\Bigr)} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m241iip 1 "title") % (c2m241iia "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2024.1} \bsk Aula 10: integral indefinida e integração por partes \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2024.1-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m241iip 2 "links") % (c2m241iia "links") {\bf Links} \scalebox{0.6}{\def\colwidth{12cm}\firstcol{ % (find-LATEXgrep "grep --color=auto -nH --null -e indefi 2023*.tex") % (c2m231macacop 7 "integral-indefinida") % (c2m231macacoa "integral-indefinida") % (c2m232ipp 5 "int-indefinida") % (c2m232ipa "int-indefinida") % «links-int-indef» (to ".links-int-indef") % (find-books "__analysis/__analysis.el" "miranda" "181" "6.1 Integral Indefinida") % (find-books "__analysis/__analysis.el" "miranda" "207" "7. Integração definida") \par \Ca{Miranda181} 6 Integral Indefinida \par \Ca{Miranda182} Figura 6.1: antiderivadas de $x^2$ \par \Ca{Miranda207} 7 Integração definida \par \Ca{Miranda212} 7.2 Integral definida \ssk % (find-books "__analysis/__analysis.el" "leithold" "285" "5. Integração e integral definida") % (find-books "__analysis/__analysis.el" "leithold" "286" "5.1. Antidiferenciação") % (find-books "__analysis/__analysis.el" "leithold" "287" "5.1.3. Teorema: ...em um intervalo I") % (find-books "__analysis/__analysis.el" "leithold" "324" "5.5. A integral definida") \par \Ca{Leit5p2} (p.285) 5 Integração e integral definida \par \Ca{Leit5p3} (p.286) 5.1 Antidiferenciação \par \Ca{Leit5p4} (p.287) 5.1.3 Teorema: ...em um intervalo $I$ \par \Ca{Leit5p41} (p.324) 5.5 A integral definida \ssk % (find-books "__analysis/__analysis.el" "stewart-pt" "337" "5.2 A Integral Definida") % (find-books "__analysis/__analysis.el" "stewart-pt" "360" "5.4 Integrais Indefinidas") % (find-books "__analysis/__analysis.el" "stewart-pt" "361" "primitiva mais geral sobre um dado int") \par \Ca{StewPtCap5p16} (p.337) 5.2 A Integral Definida \par \Ca{StewPtCap5p39} (p.360) 5.4 Integrais Indefinidas \par \Ca{StewPtCap5p40} (p.361) primitiva geral da função $f(x)=1/x^2$ \bsk % «links-int-partes» (to ".links-int-partes") % (find-books "__analysis/__analysis.el" "miranda" "199" "6.3 Integração por Partes") % (find-books "__analysis/__analysis.el" "leithold" "531" "9.1. Integração por partes") % (find-books "__analysis/__analysis.el" "stewart-pt" "420" "7.1 Integração por Partes") \par \Ca{Miranda199} 6.3 Integração por Partes \par \Ca{Leit9p4} (p.531) 9.1. Integração por partes \par \Ca{StewPtCap7p5} (p.420) 7.1 Integração por Partes \bsk Um livro recente da Márcia Fusaro Pinto (da UFRJ): % (find-books "__analysis/__analysis.el" "fusaro-tlatoc" "34" "fearlessly substituting variables") % (find-books "__analysis/__analysis.el" "fusaro-tlatoc" "178" "6 Interlude: the ordering") \par \Ca{TLATOCp45} (p.34) ...fearlessly substituting variables... \par \Ca{TLATOCp189} (p.178) 6 Interlude: the ordering of chapters... }\anothercol{ }} \newpage % «int-indefinida» (to ".int-indefinida") % (c2m241iip 3 "int-indefinida") % (c2m241iia "int-indefinida") % (c2m232ipp 5 "int-indefinida") % (c2m232ipa "int-indefinida") {\bf Integral indefinida} \scalebox{0.55}{\def\colwidth{10cm}\firstcol{ Tanto o Leithold quanto o Miranda explicam a {\sl integral indefinida} antes da {\sl integral definida}. Dê uma olhada na página de links. \msk {\sl Todos os modos fáceis de atribuir um significado intuitivo para expressões como esta aqui} % $$\intx{f(x)}$$ {\sl são gambiarras que funcionam mal.} \msk Eu vou usar esta definição aqui, \ssk \Ca{2fT23} (p.4) Outra definição para a integral indefinida \ssk e aqui tem um caso em que a definição usual quebra: \ssk \Ca{2fT24} (p.5) Meme: expanding brain, versão ln \msk }\anothercol{ Nós vamos começar usando a integral indefinida como o macaco que faz contas sem ter idéia do significado do que está fazendo, e só depois que tivermos bastante prática nós vamos discutir os vários jeitos de atribuir significados intuitivos para % $\intx{f(x)}$. \msk A regra básica vai ser esta aqui: $$\ga{II} = \left( \intx{f'(x)} = f(x) \right)$$ \bsk {\bf Exercícios} \msk Calcule: \ssk %a) $\ga{II} \CME{.[f(x) := x+42 ;; f'(x) := 1]}$ %b) $\ga{II} \CME{.[f(x) := {1//2} mul x^2 ;; f'(x) := x]}$ \msk c) Resolva os exercícios 1 a 10 daqui por chutar e testar: \Ca{Miranda185} Exercícios 6.1 \msk d) Entenda tudo que esta nesta página: \Ca{Leit5p6} (p.289) 5.1.8. Teorema }} \newpage % «r-quociente» (to ".r-quociente") % (c2m241iip 4 "r-quociente") % (c2m241iia "r-quociente") {\bf A regra do quociente} \def\x{} \def\CD{·} \def\x{(x)} \def\CD{} \def\P#1{\left(#1\right)} \def\L{\\[-11pt]} \sa{quotient rule}{ \begin{array}{rcl} \D \ddx g\x^k &=& \D kg\x^{k-1} g'\x \\\L \D \ddx g\x^{-1} &=& \D -g\x^{ -2} g'\x \\\L \D \ddx \frac{1} {g\x} &=& \D -\frac{g'\x}{g\x^2} \\\L \D \ddx \frac{f\x}{g\x} &=& \D \P{\ddx f\x}\frac{1}{g\x} + f\x\CD\P{\ddx \frac{1}{g\x}} \\\L \D &=& \D f'\x \frac{1}{g\x} + f\x\CD\P{-\frac{g'\x}{g\x ^2}} \\\L \D &=& \D \frac{f'\x g\x - f\x g'\x}{g\x^2} \\\L \D \ddx \frac{f\x}{g\x} &=& \D \frac{f'\x g\x - f\x g'\x}{g\x^2} \\\L \end{array} } \scalebox{0.42}{\def\colwidth{11cm}\firstcol{ \vspace*{-0.5cm} $$ \def\x{} \def\CD{·} \def\x{(x)} \def\CD{} \ga{quotient rule} $$ \bsk $$ \def\x{(x)} \def\CD{} \def\x{} \def\CD{·} \ga{quotient rule} $$ }\anothercol{ }} \newpage % «tr-igualdade» (to ".tr-igualdade") % (c2m241iip 5 "tr-igualdade") % (c2m241iia "tr-igualdade") {\bf A transitividade da igualdade} \sa{abcdefgh}{\pmat{a+b &=& c+d \\ &=& e+f \\ &=& g+h \\ a+b &=& g+h}} \sa{29384756}{\pmat{2+9 &=& 3+8 \\ &=& 4+7 \\ &=& 5+6 \\ 2+9 &=& 5+6}} \sa{a:=2 etc}{\bsm {a:=2 \\ b:=9 \\ c:=3 \\ d:=8 \\ e:=4 \\ f:=7 \\ g:=5 \\ h:=6}} $$\ga{abcdefgh}\ga{a:=2 etc} = \ga{29384756} $$ \newpage \def\INTX#1{\intx{#1}} \def\INTX#1{\Intx{a}{b}{#1}} \def\x{} \def\CD{·} \def\INTX#1{\intx{#1}} \def\x{(x)} \def\CD{} \def\INTX#1{\Intx{a}{b}{#1}} \sa{int kf = k int f}{ \begin{array}{rcl} \D \INTX{f\x} &=& \D F\x \\\L \D k\INTX{f\x} &=& \D kF\x \\\L \D \INTX{kf\x} &=& \D kF\x \\\L \D \INTX{kf\x} &=& \D k\INTX{f\x} \\ \end{array} } \sa{int f+g = int f + int g}{ \begin{array}{rcl} \D \INTX{f\x} &=& \D F\x \\ \D \INTX{g\x} &=& \D G\x \\ \D \INTX{f\x}+\INTX{g\x} &=& \D F\x+G\x \\ \D \INTX{f\x + g\x} &=& \D F\x+G\x \\ \D \INTX{f\x+g\x} &=& \D \INTX{f\x} + \INTX{g\x} \\ \end{array} } {\bf Linearidade da integral} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \def\x{} \def\CD{·} \def\INTX#1{\intx{#1}} \def\D{} \def\x{(x)} \def\CD{} \def\INTX#1{\Intx{a}{b}{#1}} \def\D{\displaystyle} $$\ga{int kf = k int f} $$ $$\ga{int f+g = int f + int g} $$ }\anothercol{ \def\x{(x)} \def\CD{} \def\INTX#1{\Intx{a}{b}{#1}} \def\D{\displaystyle} \def\x{} \def\CD{·} \def\INTX#1{\intx{#1}} \def\D{} $$\ga{int kf = k int f} $$ $$\ga{int f+g = int f + int g} $$ }} \newpage % «42-99» (to ".42-99") % (c2m241iip 7 "42-99") % (c2m241iia "42-99") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ $$\begin{array}{rcl} \ga{II} &=& \bigeq{ \intx {F'(x)} = F(x) } \\ \ga{IIC} &=& \bigeq{ \intx {F'(x)} = F(x) + C } \\ \ga{TFC2} &=& \bigeq{ \Intx{a}{b}{F'(x)} = \Difx{a}{b}{F(x)} } \\ \ga{defdif} &=& \bigeq{ \Difx{a}{b}{F(x)} = F(b)-F(a) } \\ \end{array} $$ \def\INTX#1{\Intx{2}{3}{#1}} \def\DIFX#1{\Difx{2}{3}{#1}} \def\INTX#1{\intx{#1}} \def\DIFX#1{#1} $$\begin{array}{rcl} \D \INTX{0} &=& \D \DIFX{42} \\ \D \INTX{0} &=& \D \DIFX{99} \\ \D \DIFX{42} &=& \D \DIFX{99} \\ \end{array} $$ \def\INTX#1{\Intx{2}{3}{#1}} \def\DIFX#1{\Difx{2}{3}{#1}} \def\INTX#1{\intx{#1}} \def\DIFX#1{#1} \def\INTX#1{\intx{#1}} \def\DIFX#1{#1+C} $$\begin{array}{rcl} \D \INTX{0} &=& \D \DIFX{42} \\ \D \INTX{0} &=& \D \DIFX{99} \\ \D \DIFX{42} &=& \D \DIFX{99} \\ \end{array} $$ \def\INTX#1{\intx{#1}} \def\DIFX#1{#1} \def\INTX#1{\Intx{2}{3}{#1}} \def\DIFX#1{\Difx{2}{3}{#1}} $$\begin{array}{rcl} \D \INTX{0} &=& \D \DIFX{42} \\ \D \INTX{0} &=& \D \DIFX{99} \\ \D \DIFX{42} &=& \D \DIFX{99} \\ \end{array} $$ }\anothercol{ }} \newpage \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \def\INTX#1{\Intx{a}{b}{#1}} \def\DIFX#1{\Difx{a}{b}{#1}} \def\x{(x)} \def\INTX#1{\intx{#1}} \def\DIFX#1{#1} \def\x{} $$\begin{array}{rcl} \D \INTX{f'\x g\x + f\x g'\x} &=& \D \DIFX{f\x g\x} \\ \D \INTX{f'\x g\x + f\x g'\x} &=& \D \INTX{f'\x g\x} + \INTX{f\x g'\x} \\ \D \INTX{f'\x g\x} + \INTX{f\x g'\x} &=& \D \DIFX{f\x g\x} \\ \D \INTX{f\x g'\x} &=& \D \DIFX{f\x g\x} - \INTX{f'\x g\x} \\ \end{array} $$ \def\INTX#1{\intx{#1}} \def\DIFX#1{#1} \def\x{} \def\INTX#1{\Intx{a}{b}{#1}} \def\DIFX#1{\Difx{a}{b}{#1}} \def\x{(x)} $$\begin{array}{rcl} \D \INTX{f'\x g\x + f\x g'\x} &=& \D \DIFX{f\x g\x} \\ \D \INTX{f'\x g\x + f\x g'\x} &=& \D \INTX{f'\x g\x} + \INTX{f\x g'\x} \\ \D \INTX{f'\x g\x} + \INTX{f\x g'\x} &=& \D \DIFX{f\x g\x} \\ \D \INTX{f\x g'\x} &=& \D \DIFX{f\x g\x} - \INTX{f'\x g\x} \\ \end{array} $$ }\anothercol{ }} \newpage % «int-partes-exemplo» (to ".int-partes-exemplo") % (c2m232ipp 4 "int-partes-exemplo") % (c2m232ipa "int-partes-exemplo") {\bf Integração por partes: um exemplo} \def\por#1{\text{(por #1)}} \def\por#1{\text{por #1}} \scalebox{0.55}{\def\colwidth{7cm}\firstcol{ Lembre que o Mathologer diz no vídeo dele que o melhor modo da gente aprender Cálculo é começar escrevendo idéias que a gente acha que devem ser verdade, e depois a gente vê se elas dão resultados certos e se elas fazem sentido... e se fizerem sentido a gente tenta formalizar elas. \msk Ele também diz -- a partir daqui, na ``lombada número 1'', \ssk \Ca{CalcEasy20:27} \ssk que a integral é a inversa da derivada, mas que $\intx{\cos x}$ pode retornar tanto $\sen x$ quanto $42+\sen x$. As contas à direita são bem improvisadas, mas como eu indiquei em cima que elas são só uma idéia que pode estar cheia de erros o ``colega que seja menos meu amigo'' não vai poder reagir deste jeito aqui... \ssk \Ca{2gT20} \bsk {\bf Exercício 0:} Calcule $\ddx(x^2e^x - 2xe^x + 2e^x)$. % * (eepitch-maxima) % * (eepitch-kill) % * (eepitch-maxima) % f : x^2*exp(x) - 2*x*exp(x) + 2*exp(x); % diff(f, x); }\anothercol{ Idéia (que pode estar cheia de erros): \bsk $\begin{array}[t]{rcll} (gh)' &\eqnp{1}& g'h + gh' & \por{$\ga{[DProd]}$} \\ \intx{(gh)'} &\eqnp{2}& \intx{g'h + gh'} \\ gh &\eqnp{3}& \intx{g'h + gh'} \\ &\eqnp{4}& \intx{g'h} + \intx{gh'} & \por{$\ga{[IISoma]}$} \\ gh \phantom{mmmmmi} &\eqnp{5}& \intx{g'h} + \intx{gh'} & \por{3 e 4} \\ gh - \intx{g'h} &\eqnp{6}& \phantom{mmmmm} \intx{gh'} & \por{5} \\ \\[-5pt] \intx{gh'} &\eqnp{7}& gh - \intx{g'h} & \por{6} \\ \\[-5pt] \intx{xe^x} &\eqnp{8}& xe^x - \intx{1·e^x} & \por{7 com $\bsm{g:=x \\ h:=e^x}$} \\ &\eqnp{9}& xe^x - \intx{e^x} \\ &\eqnp{10}& xe^x - e^x & \por{$(e^x)'=e^x$} \\ \intx{xe^x} &\eqnp{11}& xe^x - e^x & \por{8, 9 e 10} \\ \\[-5pt] \intx{x^2e^x} &\eqnp{12}& x^2e^x - \intx{2xe^x} & \por{7 com $\bsm{g:=x^2 \\ h:=e^x}$} \\ &\eqnp{13}& x^2e^x - 2\intx{xe^x} & \por{$\ga{[IIMC]}$} \\ &\eqnp{14}& x^2e^x - 2\P{xe^x - e^x} & \por{11} \\ &\eqnp{15}& x^2e^x - 2xe^x + 2e^x \\ \end{array} $ }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} [RC] = [RProd] = [RMC] = [defdif] = \intx{xe^x} = xe^x - \intx{1·e^x} = xe^x - \intx{e^x} = xe^x - e^x [defdif] [F(x):=42 \\ a:=2 \\ b:=7] = \P{\Difx{2}{3}{42} = 42-42} Troque por H e K \intx{(G(x)+H(x))'} = G(x)+H(x) \intx{G'(x)+H'(x) } = G(x)+H(x) \intx{G'(x)} = G(x) \intx{H'(x)} = H(x) \intx{G'(x)+H'(x) } = G(x)+H(x) \intx{G'(x)+H'(x) } = \int{G'(x)}+\int{H'(x)} \intx{f(x)+g(x)} = \int{f(x)} +\int{g(x)} \int{kH'(x)} = kH(x) \int {H'(x)} = H(x) k\int{H'(x)} = kH(x) \int{kH'(x)} = k\int{H'(x)} \int{kf(x)} = k\int{f(x)} % Local Variables: % coding: utf-8-unix % ee-tla: "c2ii" % ee-tla: "c2m241ii" % End: