Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-2-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-2-C2-P1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-2-C2-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-2-C2-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-2-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2023-2-C2-P1.tex")) % (defun o () (interactive) (find-LATEX "2023-1-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-2-C2-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-2-C2-P1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-2-C2-P1") % (find-pdf-page "~/LATEX/2023-2-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2023-2-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-2-C2-P1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-2-C2-P1.pdf") % file:///home/edrx/LATEX/2023-2-C2-P1.pdf % file:///tmp/2023-2-C2-P1.pdf % file:///tmp/pen/2023-2-C2-P1.pdf % http://anggtwu.net/LATEX/2023-2-C2-P1.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Escadas1") % (find-Deps1-cps "Caepro5 Escadas1") % (find-Deps1-anggs "Caepro5 Escadas1") % (find-MM-aula-links "2023-2-C2-P1" "C2" "c2m232p1" "c2p1") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.title» (to "title") % «.questoes-123» (to "questoes-123") % «.questoes-123-dicas» (to "questoes-123-dicas") % «.questoes-45» (to "questoes-45") % «.questao-5-grids» (to "questao-5-grids") % «.questao-1-gab» (to "questao-1-gab") % «.questao-2-gab» (to "questao-2-gab") % «.questao-3-gab» (to "questao-3-gab") % «.questao-4-gab» (to "questao-4-gab") % «.questao-5-gab» (to "questao-5-gab") % «.erros» (to "erros") % «.links» (to "links") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c2m232p1" "2023-2-C2-P1") % (code-eevvideo "c2m232p1" "2023-2-C2-P1") % (code-eevlinksvideo "c2m232p1" "2023-2-C2-P1") % (find-c2m232p1video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-2-C2.pdf} \def\drafturl{http://anggtwu.net/2023.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt \sa {[IP]}{\CFname{IP}{}} \sa{[TFC2]}{\CFname{TFC2}{}} \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m232p1p 1 "title") % (c2m232p1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2023.2} \bsk P1 (Primeira prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.2-C2.html} \end{center} \newpage % «links» (to ".links") % (c2m232p1p 2 "links") % (c2m232p1a "links") %{\bf Links} % %\scalebox{0.6}{\def\colwidth{9cm}\firstcol{ %}\anothercol{ %}} \newpage % «questoes-123» (to ".questoes-123") % (c2m232p1p 2 "questoes-123") % (c2m232p1a "questoes-123") % (c2m231p1p 2 "questoes-123") % (c2m231p1a "questoes-123") % (c2m222p1p 1 "questao-1") % (c2m222p1a "questao-1") % (c2m222p1p 2 "subst-trig") % (c2m222p1a "subst-trig") % (c2m222mva "title") % (c2m222mva "title" "Aula 10: Mudança de variáveis") % (c2m222tudop 49) % (c2m222striga "title") % (c2m222striga "title" "Aulas 11 e 12: substituição trigonométrica") % (find-es "maxima" "subst-trig-questions") % (find-es "maxima" "subst-trig-questions" "F(2,1)") %\vspace*{-0.4cm} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\bf Questão 1} \T(Total: 2.5 pts) \msk Calcule: $$\ints{s^3 {\sqrt{1-s^2}}^{\,3}}\;.$$ \bsk {\bf Questão 2} \T(Total: 3.0 pts) \msk Calcule a integral abaixo fazendo pelo menos duas mudanças de variável e teste o seu resultado: $$\intx{\frac{(\ln x)^3 \cos((\ln x)^4)}{x}}.$$ % $$\intx{\frac{\cos(2+\sqrt x)}{2 \sqrt x}}.$$ \bsk {\bf Questão 3} \T(Total: 2.5 pts) \msk Calcule e teste o seu resultado: $$\intx{\frac{3x+2}{(x+4)(x-5)}}\;.$$ \bsk % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ?") % (find-es "maxima" "subst-trig-questions") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T %T f(a,b) := x^a * sqrt(1 - x^2)^b; %T F(a,b) := integrate(f(a,b), x); %T f(3,1); %T F(3,1); %T %T F : sin(2+sqrt(x)); %T diff(F, x); %T %T f : (2*x + 3) / ((x-4) * (x+5)); %T F : integrate(f, x); }\anothercol{ % «questoes-123-dicas» (to ".questoes-123-dicas") % (c2m231p1p 2 "questoes-123-dicas") % (c2m231p1a "questoes-123-dicas") {} {\bf Dicas:} \ssk 1) Nestas questões o que vai contar mais pontos é você organizar as contas de modo que cada passo seja fácil de entender, de verificar, e de justificar -- ``chegar no resultado certo'' vai valer relativamente pouco. \ssk 2) Recomendo que vocês usem o método das ``caixinhas de anotações'' nas mudanças de variável... numa caixinha de anotações a primeira linha diz a relação entre a variável nova e a antiga, todas as outras linhas são consequências da primeira, e dentro da caixinha de anotações você pode usar as gambiarras com variáveis dependentes e diferenciais, como isto aqui: $dx = 42\,du$... \ssk 3) ...por exemplo: % $$\bmat{ s = \sen θ \\ \sqrt{1-s^2} = \cos θ \\ \frac{ds}{dθ} = \cos θ \\ ds = \cos θ \, dθ \\ θ = \arcsen s \\ } $$ }} \newpage % _ _ ____ % | || | ___ | ___| % | || |_ / _ \ |___ \ % |__ _| | __/ ___) | % |_| \___| |____/ % % «questoes-45» (to ".questoes-45") % (c2m232p1p 3 "questoes-45") % (c2m232p1a "questoes-45") % (c2m231p1p 3 "questoes-45") % (c2m231p1a "questoes-45") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\bf Questão 4} \T(Total: 1.0 pts) \msk No curso nós definimos que {\sl pra nós} a ``fórmula'' do TFC2 seria esta aqui: % $$\ga{[TFC2]} \;=\; \left( \Intx{a}{b}{F'(x)} \;=\; \difx{a}{b}{F(x)} \right) $$ Mostre que quando $a=1$, $b=3$ e % $$F(x) = \begin{cases} 2x & \text{quando $x<2$}, \\ x & \text{quando $x≥2$} \\ \end{cases} $$ a fórmula $\ga{[TFC2]}$ é falsa. \msk Dicas: o melhor modo de fazer isto é representando graficamente $F(x)$ e $F'(x)$ e calculando certas coisas a partir dos gráficos. Considere que o leitor sabe calcular áreas de retângulos, triângulos e trapézios no olhômetro quando as coordenadas deles são números simples, mas complemente os seus gráficos com um pouquinho de português quando nem tudo for óbvio só a partir dos gráficos. }\anothercol{ {\bf Questão 5} \T(Total: 1.0 pts) \msk Seja $f(t)$ a função no topo da página seguinte. Seja % $$F(x) \;=\; \Intt{2}{x}{f(t)}.$$ Desenhe o gráfico de $F(x)$ em algum dos grids vazios da próxima página. Indique claramente qual é a versão final e quais desenhos são rascunhos. }} \newpage % «questao-5-grids» (to ".questao-5-grids") % (c2m232p1p 4 "questao-5-grids") % (c2m232p1a "questao-5-grids") % (c2m231p1p 4 "questao-5-grids") % (c2m231p1a "questao-5-grids") % (c2m222p1p 4 "questao-5-grids") % (c2m222p1a "questao-5-grids") %L -- (find-angg "LUA/Pict2e1-1.lua" "FromYs") %L fry = FromYs.from {ys={0,-1,1,-2,2,-3,3,-3,2,-2,1,-1,0}, Y0=0} :setall() %L fry = FromYs.from {ys={0,-1,-3,3,1,0,1,2,1,0,-1,-2,-1,0}, Y0=0} :setall() %L fry = FromYs.from {ys={2,1,0,1,2,-2,1,-2,0,-2,0,1,2,1,0,-1,-2,-1,0}, Y0=-3} :setall() %L Pict { %L fry:ypict() :sa("fig f"), %L fry:ypict() :prethickness("1pt"):sa("fig f"), %L fry:Ypict() :sa("fig F"), %L fry:grid(-4,4):sa("grid F"), %L } :output() \pu \unitlength=8pt $\begin{array}{ll} \ga{fig f} \phantom{mm} & \ga{fig f} \\ \\ \ga{grid F} & \ga{grid F} \\ \\ \ga{grid F} & \ga{grid F} \\ \end{array} $ \newpage % «questao-1-gab» (to ".questao-1-gab") % 2hT190: (c2m232p1p 5 "questao-1-gab") % (c2m232p1a "questao-1-gab") % 2gT113: (c2m231p1p 5 "questao-1-gab") % (c2m231p1a "questao-1-gab") % 2fT112: (c2m222p1p 5 "questao-1-gab") % (c2m222p1a "questao-1-gab") % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T s : sqrt(1-4*x^2); %T f : x^3 * s; %T F : integrate(f, x); %T G : (1/16) * (s^5/5 - s^3/3); %T g : diff(G, x); %T expand(rat(g*s)); %T expand(rat(f*s)); {\bf Questão 1: gabarito} \def\dds{\frac{d}{ds}} \def\sqs{\sqrt{1-s^2}} \scalebox{0.45}{\def\colwidth{20cm}\firstcol{ \vspace*{-0.5cm} $$\begin{array}[t]{rcl} \\ \ints{s^3 \sqrt{1-s^2}^3} &=& \intth{(\senθ)^3 (\cosθ)^3(\cosθ)} \\ &=& \intth{(\cosθ)^4(\senθ)^2(\senθ)} \\ &=& \intth{(\cosθ)^4(1-(\cosθ)^2)(\senθ)} \\ &=& \intc {c^4(1-c^2)(-1)} \\ &=& \intc {c^4(c^2-1)} \\ &=& \intc {c^6-c^4} \\ &=& \frac17 c^7 - \frac15 c^5 \\ &=& \frac17 \sqrt{1-s^2}^7 - \frac15 \sqrt{1-s^2}^5 \\ \\ \dds\sqs &=& \dds(1-s^2)^{1/2} \\ &=& \frac12 (1-s^2)^{-1/2} \dds(1-s^2) \\ &=& \frac12 (1-s^2)^{-1/2} (-2s) \\ &=& - (1-s^2)^{-1/2} s \\ &=& -\sqs^{-1} s \\ \dds\sqs^k &=& (k\sqs^{k-1})(\dds\sqs) \\ &=& (k\sqs^{k-1})(-\sqs^{-1}s) \\ &=& -k\sqs^{k-2}s \\ \dds\sqs^7 &=& -7 \sqs^5 s \\ \dds\sqs^5 &=& -5 \sqs^3 s \\ \dds(\frac17 \sqs^7 - \frac15 \sqs^5) &=& \frac17(-7\sqs^5 s) - \frac15(-5\sqs^3 s) \\ &=& -\sqs^5 s + \sqs^3 s \\ &=& (-\sqs^2+1) \sqs^3 s \\ &=& (-(1-s^2)+1) \sqs^3 s \\ &=& (-1+s^2+1) \sqs^3 s \\ &=& s^2 \sqs^3 s \\ &=& s^3 \sqs^3 \\ \end{array} \hspace*{0cm} \begin{array}[t]{l} \\ \bsm{s = \senθ \\ s^2 = (\senθ)^2 \\ 1-s^2 = (\cosθ)^2 \\ \sqrt{1-s^2} = \cosθ \\ \frac{ds}{dθ} = \cosθ \\ ds = \cosθ\,dθ \\ } \\ \\[-7pt] \bsm{c = \cosθ \\ \frac{dc}{dθ} = -\senθ \\ dc = -\senθ\,dθ \\ (-1)dc = \senθ\,dθ \\ (\senθ)^2 = 1-c^2 \\ } \\ \\ \vspace*{6cm} \end{array} $$ }\anothercol{ }} \newpage % «questao-2-gab» (to ".questao-2-gab") % (c2m232p1p 6 "questao-2-gab") % (c2m232p1a "questao-2-gab") % (c2m231p1p 6 "questao-2-gab") % (c2m231p1a "questao-2-gab") % (c2m222p1p 6 "questao-2-gab") % (c2m222p1a "questao-2-gab") {\bf Questão 2: gabarito} \scalebox{0.8}{\def\colwidth{14cm}\firstcol{ \vspace*{-0.5cm} $$\begin{array}[t]{rcl} \\ \intx{\frac{(\ln x)^3 \cos((\ln x)^4)}{x}} &=& \intx{(\ln x)^3 \cos((\ln x)^4)\frac{1}{x}} \\ &=& \intu{u^3 \cos(u^4)} \\ &=& \intu{\cos(u^4)u^3} \\ &=& \intv{\cos v·\frac14} \\ &=& \frac14 \intv{\cos v} \\ &=& \frac14 \sen v \\ &=& \frac14 \sen(u^4) \\ &=& \frac14 \sen((\ln x)^4) \\ \\[-5pt] \ddx (\frac14 \sen((\ln x)^4)) &=& \frac14 \cos((\ln x)^4) \, \ddx((\ln x)^4) \\ &=& \frac14 \cos((\ln x)^4) · 4(\ln x)^3 \ddx(\ln x) \\ &=& \frac14 \cos((\ln x)^4) · 4(\ln x)^3 \frac1x \\ &=& \cos((\ln x)^4) (\ln x)^3 \frac1x \\ &=& \frac{(\ln x)^3 \cos((\ln x)^4)}{x} \\ \end{array} \hspace*{-0.5cm} \begin{array}[t]{c} \\ \subst{u \;=\; \ln x \\ \frac{du}{dx} \;=\; \frac1x \\ du \;=\; \frac1x dx \\ } \\ \\[-5pt] \subst{v \;=\; u^4 \\ \frac{dv}{du} \;=\; 4u^3 \\ dv \;=\; 4u^3 du \\ \frac14 dv \;=\; u^3 du \\ } \\ \\ \vspace*{1.5cm} \end{array} $$ }\anothercol{ }} \newpage % «questao-3-gab» (to ".questao-3-gab") % (c2m232p1p 7 "questao-3-gab") % (c2m232p1a "questao-3-gab") % (c2m231p1p 7 "questao-3-gab") % (c2m231p1a "questao-3-gab") % (c2m222p1p 8 "questao-4-gab") % (c2m222p1a "questao-4-gab") {\bf Questão 3: gabarito (falta o teste)} \scalebox{0.75}{\def\colwidth{15cm}\firstcol{ \vspace*{0cm} $$\begin{array}{lrcl} \text{Queremos integrar:} & \intx{\frac{3x+2}{(x+4)(x-5)}} \\ \text{Queremos que:} & \frac{3x+2}{(x+4)(x-5)} &=& \frac{A}{x+4} + \frac{B}{x-5} \\ \text{Sabemos que:} & \frac{A}{x+4} + \frac{B}{x-5} &=& \frac{A(x-5)}{(x+4)(x-5)} + \frac{B(x+4)}{(x+4)(x-5)} \\ &&=& \frac{A(x-5)+B(x+4)}{(x+4)(x-5)} \\ &&=& \frac{Ax-5A+Bx+4B}{(x-4)(x+5)} \\ &&=& \frac{(A+B)x+(-5A+4B)}{(x-4)(x+5)} \\ \text{Então:} & \frac{3x+2}{(x+4)(x-5)} &=& \frac{(A+B)x+(-5A+4B)}{(x-4)(x+5)} \\ \\[-7pt] & 3x+2 &=& (A+B)x+(-5A+4B) \\ & A+B &=& 3 \\ & -5A+4B &=& 2 \\ & A &=& 10/9 \\ & B &=& 17/9 \\ \\[-7pt] & \frac{3x+2}{(x+4)(x-5)} &=& \frac{10/9}{x+4} + \frac{17/9}{x-5} \\ & \intx{\frac{3x+2}{(x+4)(x-5)}} &=& \intx{\frac{10/9}{x+4} + \frac{17/9}{x-5}} \\ &&=& \frac{10}{9} \ln|x+4| + \frac{17}{9} \ln|x-5| \\ \end{array} $$ }\anothercol{ }} % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ?") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T linsolve ([A+B=4, 3*A-2*B=5], [A, B]); %T linsolve ([A+B=2, 5*A-4*B=3], [A, B]); %T %T f : (4*x + 5) / ((x-2)*(x+3)); %T partfrac(f, x); %T F : integrate(f, x); \newpage % «questao-4-gab» (to ".questao-4-gab") % (c2m232p1p 8 "questao-4-gab") % (c2m232p1a "questao-4-gab") % (c2m231p1p 8 "questao-4-gab") % (c2m231p1a "questao-4-gab") % (c2m222p1p 7 "questao-3-gab") % (c2m222p1a "questao-3-gab") % (c2m221atisp 21 "1-then-2") % (c2m221atisa "1-then-2") {\bf Questão 4: gabarito} %L PictBounds.setbounds(v(0,-4), v(4,4)) %L spec = "(0,0)--(2,4)c (2,2)o--(4,4)" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("F(x)"):output() %L %L PictBounds.setbounds(v(0,-4), v(4,4)) %L spec = "(0,2)--(2,2)o (2,1)o--(4,1)" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("F'(x)"):output() %L %L spec = "(0,2)--(2,2)o (2,1)c--(4,1)" %L pwsa = PwSpec.from(spec) %L pf = Pict { %L pwsa:topwfunction():areaify(1, 3):Color("Orange"), %L pws:topict() %L } %L pf:pgat("pgatc"):sa("int F'(x)"):output() \pu \msk \unitlength=5pt $$F(x) = \ga{F(x)} \quad F'(x) = \ga{F'(x)} \quad \textstyle \Intx{1}{3}{F'(x)} = \ga{int F'(x)} = 3 $$ \def\und#1#2{\underbrace{#1}_{#2}} $$\und{ \und{\Intx{1}{3}{F'(x)}}{3} \;=\; \und{\und{\und{\difx{1}{3}{F(x)}}{F(3)-F(1)}}{3-2}}{1} }{\False} $$ % (c2m221vsbp 6 "questao-1-gab") % (c2m221vsba "questao-1-gab") \newpage % «questao-5-gab» (to ".questao-5-gab") % (c2m231p1p 9 "questao-5-gab") % (c2m231p1a "questao-5-gab") % (c2m222p1p 9 "questao-5-gab") % (c2m222p1a "questao-5-gab") {\bf Questão 5: gabarito} \unitlength=10pt $$\begin{array}{r} f(x) \;=\; \ga{fig f} \\ \\ F(x) \;=\; \Intt{2}{x}{f(t)} \;=\; \ga{fig F} \\ \end{array} $$ \newpage % «erros» (to ".erros") % (c2m232p1p 10 "erros") % (c2m232p1a "erros") {\bf Erros que muitas pessoas cometeram} \scalebox{0.9}{\def\colwidth{9cm}\firstcol{ \bsk $\begin{array}{rl} \standout{1a:} & \D \intc{c^4(c^2-1)} \;=\; \intc{c^8-c^4} \\ \\ \standout{3a:} & \D \intx {\frac{3x+2}{(x+4)(x-5)}} \;=\; \frac{A}{x+4} + \frac{B}{x-5} \\ \\ \standout{3b:} & \D \int {\frac{3x+2}{(x+4)(x-5)}} \;=\; \int {\frac{10/9}{x+4} + \frac{17/9}{x-5}} \\ \\ % \;=\; \frac{10}{9} \int {\frac{1}{x+4}} + \frac{17}{9} \int {\frac{1}{x-5}} \\ \standout{3c:} & \D \frac{ \frac{10}{9}(x+4) + \frac{17}{9}(x-5) } {(x+4)(x-5)} \;=\; \frac{ (\frac{10}{9}+\frac{17}{9})x + (\frac{68}{9}-\frac{50}{9}) } {(x+4)(x-5)} \\ \end{array} $ }\anothercol{ }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2023.2-C2/") # (find-fline "~/LATEX/2023-2-C2/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2023.2-C2/ cp -fv $1.pdf ~/LATEX/2023-2-C2/ cat <<%%% % (find-latexscan-links "C2" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2023-2-C2-P1 veryclean make -f 2019.mk STEM=2023-2-C2-P1 pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c2p1" % ee-tla: "c2m232p1" % End: