Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2022-2-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2022-2-C2-P1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2022-2-C2-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2022-2-C2-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2022-2-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2022-2-C2-P1.tex")) % (defun o () (interactive) (find-LATEX "2022-2-C2-dicas-pra-P1.tex")) % (defun oo () (interactive) (find-LATEX "2022-1-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2022-2-C2-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2022-2-C2-P1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2022-2-C2-P1") % (find-pdf-page "~/LATEX/2022-2-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2022-2-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2022-2-C2-P1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2022-2-C2-P1.pdf") % file:///home/edrx/LATEX/2022-2-C2-P1.pdf % file:///tmp/2022-2-C2-P1.pdf % file:///tmp/pen/2022-2-C2-P1.pdf % http://angg.twu.net/LATEX/2022-2-C2-P1.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/") % (find-CN-aula-links "2022-2-C2-P1" "2" "c2m222p1" "c2p1") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.title» (to "title") % «.questao-1» (to "questao-1") % «.subst-trig» (to "subst-trig") % «.questao-2» (to "questao-2") % «.int-por-partes» (to "int-por-partes") % «.questao-3» (to "questao-3") % «.TFC2» (to "TFC2") % «.questao-4» (to "questao-4") % «.fracoes-parciais» (to "fracoes-parciais") % «.questao-5» (to "questao-5") % «.mathologermovel» (to "mathologermovel") % «.questao-5-grids» (to "questao-5-grids") % % «.questao-1-gab» (to "questao-1-gab") % «.questao-2-gab» (to "questao-2-gab") % «.questao-3-gab» (to "questao-3-gab") % «.questao-4-gab» (to "questao-4-gab") % «.questao-5-gab» (to "questao-5-gab") % <videos> % Video (not yet): % (find-ssr-links "c2m222p1" "2022-2-C2-P1") % (code-eevvideo "c2m222p1" "2022-2-C2-P1") % (code-eevlinksvideo "c2m222p1" "2022-2-C2-P1") % (find-c2m222p1video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L -- dofile "QVis1.lua" -- (find-LATEX "QVis1.lua") %L -- dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua") %L -- dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") %L Pict2e.__index.suffix = "%" \pu \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\u#1{\par{\footnotesize \url{#1}}} \def\drafturl{http://angg.twu.net/LATEX/2022-2-C2.pdf} \def\drafturl{http://angg.twu.net/2022.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} \sa{[IP]}{\CFname{IP}{}} \sa{[TFC2]}{\CFname{TFC2}{}} % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m222p1p 1 "title") % (c2m222p1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2022.2} \bsk P1 (Primeira prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://angg.twu.net/2022.2-C2.html} \end{center} \newpage % «questao-1» (to ".questao-1") % (c2m222p1p 1 "questao-1") % (c2m222p1a "questao-1") % «subst-trig» (to ".subst-trig") % (c2m222p1p 2 "subst-trig") % (c2m222p1a "subst-trig") % (c2m222mva "title") % (c2m222mva "title" "Aula 10: Mudança de variáveis") % (c2m222tudop 49) % (c2m222striga "title") % (c2m222striga "title" "Aulas 11 e 12: substituição trigonométrica") % (find-es "maxima" "subst-trig-questions" "FF(3,1,4)") %\vspace*{-0.4cm} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\bf Questão 1} \T(Total: 3.0 pts) \msk Calcule: $$\intx{x^3 \sqrt{1-4x^2}}\;.$$ \bsk {\bf Dicas:} 1) Você provavelmente vai precisar de pelo menos duas mudanças de variável pra chegar no resultado final. 2) No curso nós vimos dois modos de fazer mudanças de variável de um jeito legível: um modo usava chaves sob subexpressões e o outro modo usava ``caixinhas de anotações'' como a abaixo, % $$\bmat{ u = \sen x \\ \frac{du}{dx} = \frac{d}{dx} \sen x = \cos x \\ \cos x \, dx = du \\ x = \arcsen u \\ } $$ em que todas as outras linhas da caixinha eram consequência da primeira. }\anothercol{ % «questao-2» (to ".questao-2") % «int-por-partes» (to ".int-por-partes") % (c2m222p1p 2 "int-por-partes") % (c2m222p1a "int-por-partes") % (c2m222ippp 1 "title") % (c2m222ippa "title") {\bf Questão 2} \T(Total: 2.0 pts) \msk No curso nós definimos que {\sl pra nós} a ``fórmula da integração por partes'' seria esta aqui: % $$\ga{[IP]} \;=\; \left( \intx{fg'} \;\;=\;\; fg - \intx{f'g} \right) $$ Mostre que aplicando integração por partes três vezes dá pra obter uma fórmula que transforma a integral $\intx{x^3 h'''(x)}$ em algo bem mais simples. Aqui você vai poder omitir os argumentos das funções se quiser --- note que na \ga{[IP]} eu abreviei, por exemplo, `$f(x)$' para `$f$'. \msk Nesta questão eu vou ver principalmente se você sabe os truques pra deixar as contas dela organizadas e legíveis. }} \newpage \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ % «questao-3» (to ".questao-3") % (c2m222p1p 3 "questao-3") % (c2m222p1a "questao-3") % «TFC2» (to ".TFC2") {\bf Questão 3} \T(Total: 2.0 pts) \msk No curso nós definimos que {\sl pra nós} a ``fórmula'' do TFC2 seria esta aqui: % $$\ga{[TFC2]} \;=\; \left( \Intx{a}{b}{F'(x)} \;=\; \difx{a}{b}{F(x)} \right) $$ Mostre que quando $a=1$, $b=3$ e % $$F(x) = \begin{cases} x & \text{quando $x<2$}, \\ 2x & \text{quando $x≥2$} \\ \end{cases} $$ a fórmula $\ga{[TFC2]}$ é falsa. \msk Dicas: o melhor modo de fazer isto é representando graficamente $F(x)$ e $F'(x)$ e calculando certas coisas a partir dos gráficos. Considere que o leitor sabe calcular áreas de retângulos, triângulos e trapézios no olhômetro quando as coordenadas deles são números simples, mas complemente os seus gráficos com um pouquinho de português quando nem tudo for óbvio só a partir dos gráficos. }\anothercol{ % «questao-4» (to ".questao-4") % «fracoes-parciais» (to ".fracoes-parciais") % (c2m222p1p 3 "fracoes-parciais") % (c2m222p1a "fracoes-parciais") % (c2m222fpp 1 "title") % (c2m222fpa "title") {\bf Questão 4} \T(Total: 2.0 pts) \msk Calcule: $$\intx{\frac{4x+5}{(x-2)(x+3)}}$$ \msk e teste o seu resultado. \bsk \bsk \bsk \bsk \msk % «questao-5» (to ".questao-5") % «mathologermovel» (to ".mathologermovel") % (c2m222p1p 3 "questao-5") % (c2m222p1a "questao-5") {\bf Questão 5} \T(Total: 1.0 pts) \msk Seja $f(x)$ a função no topo da página seguinte. Seja % $$F(x) \;=\; \Intt{2}{x}{f(x)}.$$ Desenhe o gráfico de $F(x)$ em algum dos grids vazios da próxima página. Indique claramente qual é a versão final e quais desenhos são rascunhos. }} \newpage % «questao-5-grids» (to ".questao-5-grids") % (c2m222p1p 4 "questao-5-grids") % (c2m222p1a "questao-5-grids") %L -- (find-angg "LUA/Pict2e1-1.lua" "FromYs") %L fryF = FromYs.fromys({0,-1,1,-2,2,-3,3,-3,2,-2,1,-1,0}):getYs(1) %L fryF:getypict():pgat("pgatc"):sa("fig f"):output() %L fryF:getYpict():pgat("pgatc"):sa("fig F"):output() %L fryF:getYgrid(-4,4): %L pgat("pgatc"):sa("grid F"):output() \pu \unitlength=8pt $\begin{array}{ll} \ga{fig f} \phantom{mm} & \ga{fig f} \\ \\ \ga{grid F} & \ga{grid F} \\ \\ \ga{grid F} & \ga{grid F} \\ \end{array} $ \newpage % «questao-1-gab» (to ".questao-1-gab") % 2fT112: (c2m222p1p 5 "questao-1-gab") % (c2m222p1a "questao-1-gab") % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T s : sqrt(1-4*x^2); %T f : x^3 * s; %T F : integrate(f, x); %T G : (1/16) * (s^5/5 - s^3/3); %T g : diff(G, x); %T expand(rat(g*s)); %T expand(rat(f*s)); {\bf Questão 1: gabarito} $$\scalebox{0.9}{$ \begin{array}{rcl} \intx{x^3 \sqrt{1-4x^2}} &=& \intu{\frac18 u^3 \sqrt{1-u^2}·\frac12} \\ &=& \frac1{16}\intu{u^3 \sqrt{1-u^2}} \\ &=& \frac1{16}\intth{(\senθ)^3 (\cosθ)(\cosθ)} \\ &=& \frac1{16}\intth{(\cosθ)^2 (\senθ)^2 (\senθ)} \\ &=& \frac1{16}\intc{c^2 (1-c^2)(-1)} \\ &=& \frac1{16}\intc{c^2 (c^2-1)} \\ &=& \frac1{16}\intc{c^4 - c^2} \\ &=& \frac1{16}(\frac{c^5}{5} - \frac{c^3}{3}) \\ &=& \frac1{16}(\frac{(\cosθ)^5}{5} - \frac{(\cosθ)^3}{3}) \\ &=& \frac1{16}(\frac{\sqrt{1-u^2}^5}{5} - \frac{\sqrt{1-u^2}^3}{3}) \\ &=& \frac1{16}(\frac{\sqrt{1-4x^2}^5}{5} - \frac{\sqrt{1-4x^2}^3}{3}) \\ \end{array} \quad \begin{array}{l} \bsm{u = 2x \\ u^2 = 4x^2 \\ x = u/2 \\ x^3 = u^3/8 \\ du = 2dx \\ dx = \frac12 du \\ } \\ \\[-7pt] \bsm{u = \senθ \\ u^2 = (\senθ)^2 \\ 1-u^2 = (\cosθ)^2 \\ \sqrt{1-u^2} = \cosθ \\ \frac{du}{dθ} = \cosθ \\ du = \cosθ\,dθ \\ } \\ \\[-7pt] \bsm{c = \cosθ \\ \frac{dc}{dθ} = -\senθ \\ dc = -\senθ\,dθ \\ (-1)dc = \senθ\,dθ \\ (\senθ)^2 = 1-c^2 \\ } \\ \end{array} $} $$ \newpage % «questao-2-gab» (to ".questao-2-gab") % (c2m222p1p 6 "questao-2-gab") % (c2m222p1a "questao-2-gab") {\bf Questão 2: gabarito} $$\begin{array}{rcl} \intx{x^3 h'''} &=& x^3 h'' - \intx{3x^2 h''} \\ &=& x^3 h'' - 3\intx{x^2 h''} \\ \intx{x^2 h''} &=& x^2 h' - \intx{2x h'} \\ &=& x^2 h' - 2\intx{x h'} \\ \intx{x h'} &=& x h - \intx{1·h} \\ &=& x h - \intx{h} \\ \\[-5pt] \intx{x^3 h'''} &=& x^3 h'' - 3\intx{x^2 h''} \\ &=& x^3 h'' - 3(x^2 h' - 2\intx{x h'}) \\ &=& x^3 h'' - 3(x^2 h' - 2(x h - \intx{h})) \\ &=& x^3 h'' - 3 x^2 h' + 6(x h - \intx{h}) \\ &=& x^3 h'' - 3 x^2 h' + 6x h - 6\intx{h}) \\ \end{array} $$ \newpage % «questao-3-gab» (to ".questao-3-gab") % (c2m222p1p 7 "questao-3-gab") % (c2m222p1a "questao-3-gab") % (c2m221atisp 21 "1-then-2") % (c2m221atisa "1-then-2") {\bf Questão 3: gabarito} %L Pict2e.bounds = PictBounds.new(v(0,0), v(4,8)) %L spec = "(0,0)--(2,2)c (2,4)o--(4,8)" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("F(x)"):output() %L %L Pict2e.bounds = PictBounds.new(v(0,0), v(4,8)) %L spec = "(0,1)--(2,1)o (2,2)o--(4,2)" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("F'(x)"):output() %L %L spec = "(0,1)--(2,1)o (2,2)c--(4,2)" %L pwsa = PwSpec.from(spec) %L pf = PictList{ %L pwsa:topwfunction():areaify(1, 3):Color("Orange"), %L pws:topict() %L } %L pf:pgat("pgatc"):sa("int F'(x)"):output() \pu \msk \unitlength=5pt $$F(x) = \ga{F(x)} \quad F'(x) = \ga{F'(x)} \quad \textstyle \Intx{1}{3}{F'(x)} = \ga{int F'(x)} = 3 $$ \def\und#1#2{\underbrace{#1}_{#2}} $$\und{ \und{\Intx{1}{3}{F'(x)}}{3} \;=\; \und{\und{\und{\difx{1}{3}{F(x)}}{F(3)-F(1)}}{6-1}}{5} }{\False} $$ % (c2m221vsbp 6 "questao-1-gab") % (c2m221vsba "questao-1-gab") \newpage % «questao-4-gab» (to ".questao-4-gab") % (c2m222p1p 8 "questao-4-gab") % (c2m222p1a "questao-4-gab") {\bf Questão 4: gabarito} $$\scalebox{0.8}{$ \begin{array}{rcl} \frac{4x+5}{(x-2)(x+3)} &=& \frac{A}{x-2} + \frac{B}{x+3} \\ &=& \frac{A(x+3)}{(x-2)(x+3)} + \frac{B(x-2)}{(x-2)(x+3)} \\ &=& \frac{A(x+3)+B(x-2)}{(x-2)(x+3)} \\ &=& \frac{Ax+3A+Bx-2B}{(x-2)(x+3)} \\ &=& \frac{(A+B)x+(3A-2B)}{(x-2)(x+3)} \\ \\[-5pt] 4x+5 &=& (A+B)x+(3A-2B) \\ A+B &=& 4 \\ 3A-2B &=& 5 \\ A &=& 13/5 \\ B &=& 7/5 \\ \\[-5pt] \frac{4x+5}{(x-2)(x+3)} &=& \frac{13/5}{x-2} + \frac{7/5}{x+3} \\ \intx{\frac{4x+5}{(x-2)(x+3)}} &=& \intx{\frac{13/5}{x-2} + \frac{7/5}{x+3}} \\ &=& \frac{13}{5}\intx{\frac{1}{x-2}} + \frac{7}{5}\intx{\frac{1}{x+3}} \\ &=& \frac{13}{5} \ln |x-2| + \frac{7}{5} \ln |x+3| \\ \end{array} $} $$ % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ?") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T linsolve ([A+B=4, 3*A-2*B=5], [A, B]); %T %T f : (4*x + 5) / ((x-2)*(x+3)); %T partfrac(f, x); %T F : integrate(f, x); \newpage % «questao-5-gab» (to ".questao-5-gab") % (c2m222p1p 9 "questao-5-gab") % (c2m222p1a "questao-5-gab") {\bf Questão 5: gabarito} \unitlength=10pt $$\begin{array}{r} f(x) \;=\; \ga{fig f} \\ \\ F(x) \;=\; \Intt{2}{x}{f(t)} \;=\; \ga{fig F} \\ \end{array} $$ \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "c2p1" % ee-tla: "c2m222p1" % End: