Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-1-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-1-C2-P1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-1-C2-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-1-C2-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-1-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2023-1-C2-P1.tex")) % (defun o () (interactive) (find-LATEX "2022-2-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-1-C2-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-1-C2-P1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-1-C2-P1") % (find-pdf-page "~/LATEX/2023-1-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2023-1-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-1-C2-P1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-1-C2-P1.pdf") % file:///home/edrx/LATEX/2023-1-C2-P1.pdf % file:///tmp/2023-1-C2-P1.pdf % file:///tmp/pen/2023-1-C2-P1.pdf % http://anggtwu.net/LATEX/2023-1-C2-P1.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Gram2.lua Tree1.lua Caepro5.lua ~/LATEX/") % (find-MM-aula-links "2023-1-C2-P1" "C2" "c2m231p1" "c2p1") % «.defs» (to "defs") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-T-and-B» (to "defs-T-and-B") % «.title» (to "title") % «.questoes-123» (to "questoes-123") % «.questoes-123-dicas» (to "questoes-123-dicas") % «.questoes-45» (to "questoes-45") % «.questao-5-grids» (to "questao-5-grids") % «.questao-1-gab» (to "questao-1-gab") % «.questao-2-gab» (to "questao-2-gab") % «.questao-3-gab» (to "questao-3-gab") % «.questao-4-gab» (to "questao-4-gab") % «.questao-5-gab» (to "questao-5-gab") % «.links» (to "links") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c2m231p1" "2023-1-C2-P1") % (code-eevvideo "c2m231p1" "2023-1-C2-P1") % (code-eevlinksvideo "c2m231p1" "2023-1-C2-P1") % (find-c2m231p1video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-1-C2.pdf} \def\drafturl{http://anggtwu.net/2023.1-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L V = nil -- (find-angg "LUA/Pict2e1.lua" "MiniV") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L Pict2e.__index.suffix = "%" \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt \pu \sa{[IP]}{\CFname{IP}{}} \sa{[TFC2]}{\CFname{TFC2}{}} % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m231p1p 1 "title") % (c2m231p1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2023.1} \bsk P1 (Primeira prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.1-C2.html} \end{center} \newpage % «questoes-123» (to ".questoes-123") % (c2m231p1p 2 "questoes-123") % (c2m231p1a "questoes-123") % (c2m222p1p 1 "questao-1") % (c2m222p1a "questao-1") % (c2m222p1p 2 "subst-trig") % (c2m222p1a "subst-trig") % (c2m222mva "title") % (c2m222mva "title" "Aula 10: Mudança de variáveis") % (c2m222tudop 49) % (c2m222striga "title") % (c2m222striga "title" "Aulas 11 e 12: substituição trigonométrica") % (find-es "maxima" "subst-trig-questions") % (find-es "maxima" "subst-trig-questions" "F(2,1)") %\vspace*{-0.4cm} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\bf Questão 1} \T(Total: 2.5 pts) \msk Calcule: $$\ints{s^3 \sqrt{1-s^2}}\;.$$ \bsk {\bf Questão 2} \T(Total: 2.5 pts) \msk Calcule a integral abaixo fazendo pelo menos duas mudanças de variável e teste o seu resultado: $$\intx{\frac{\cos(2+\sqrt x)}{2 \sqrt x}}.$$ \bsk {\bf Questão 3} \T(Total: 2.5 pts) \msk Calcule e teste o seu resultado: $$\intx{\frac{2x+3}{(x-4)(x+5)}}\;.$$ \bsk % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ?") % (find-es "maxima" "subst-trig-questions") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T %T f(a,b) := x^a * sqrt(1 - x^2)^b; %T F(a,b) := integrate(f(a,b), x); %T f(3,1); %T F(3,1); %T %T F : sin(2+sqrt(x)); %T diff(F, x); %T %T f : (2*x + 3) / ((x-4) * (x+5)); %T F : integrate(f, x); }\anothercol{ % «questoes-123-dicas» (to ".questoes-123-dicas") % (c2m231p1p 2 "questoes-123-dicas") % (c2m231p1a "questoes-123-dicas") {} {\bf Dicas:} \ssk 1) Nestas questões o que vai contar mais pontos é você organizar as contas de modo que cada passo seja fácil de entender, de verificar, e de justificar -- ``chegar no resultado certo'' vai valer relativamente pouco. \ssk 2) Recomendo que vocês usem o método das ``caixinhas de anotações'' nas mudanças de variável... numa caixinha de anotações a primeira linha diz a relação entre a variável nova e a antiga, todas as outras linhas são consequências da primeira, e dentro da caixinha de anotações você pode usar as gambiarras com diferenciais, como isto aqui: $dx = 42\,du$... \ssk 3) ...por exemplo: % $$\bmat{ s = \sen θ \\ \sqrt{1-s^2} = \cos θ \\ \frac{ds}{dθ} = \cos θ \\ ds = \cos θ \, dθ \\ θ = \arcsen s \\ } $$ }} \newpage % _ _ ____ % | || | ___ | ___| % | || |_ / _ \ |___ \ % |__ _| | __/ ___) | % |_| \___| |____/ % % «questoes-45» (to ".questoes-45") % (c2m231p1p 3 "questoes-45") % (c2m231p1a "questoes-45") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\bf Questão 4} \T(Total: 1.5 pts) \msk No curso nós definimos que {\sl pra nós} a ``fórmula'' do TFC2 seria esta aqui: % $$\ga{[TFC2]} \;=\; \left( \Intx{a}{b}{F'(x)} \;=\; \difx{a}{b}{F(x)} \right) $$ Mostre que quando $a=1$, $b=3$ e % $$F(x) = \begin{cases} x & \text{quando $x<2$}, \\ -x & \text{quando $x≥2$} \\ \end{cases} $$ a fórmula $\ga{[TFC2]}$ é falsa. \msk Dicas: o melhor modo de fazer isto é representando graficamente $F(x)$ e $F'(x)$ e calculando certas coisas a partir dos gráficos. Considere que o leitor sabe calcular áreas de retângulos, triângulos e trapézios no olhômetro quando as coordenadas deles são números simples, mas complemente os seus gráficos com um pouquinho de português quando nem tudo for óbvio só a partir dos gráficos. }\anothercol{ {\bf Questão 5} \T(Total: 1.0 pts) \msk Seja $f(t)$ a função no topo da página seguinte. Seja % $$F(x) \;=\; \Intt{5}{x}{f(t)}.$$ Desenhe o gráfico de $F(x)$ em algum dos grids vazios da próxima página. Indique claramente qual é a versão final e quais desenhos são rascunhos. }} \newpage % «questao-5-grids» (to ".questao-5-grids") % (c2m231p1p 4 "questao-5-grids") % (c2m231p1a "questao-5-grids") % (c2m222p1p 4 "questao-5-grids") % (c2m222p1a "questao-5-grids") %L -- (find-angg "LUA/Pict2e1-1.lua" "FromYs") %L fryF = FromYs.fromys({0,-1,1,-2,2,-3,3,-3,2,-2,1,-1,0}):getYs(1) %L fryF = FromYs.fromys({0,-1,-3,3,1,0,1,2,1,0,-1,-2,-1,0}):getYs(0) %L fryF:getypict():pgat("pgatc"):sa("fig f"):output() %L fryF:getYpict():pgat("pgatc"):sa("fig F"):output() %L fryF:getYgrid(-4,4): %L pgat("pgatc"):sa("grid F"):output() \pu \unitlength=8pt $\begin{array}{ll} \ga{fig f} \phantom{mm} & \ga{fig f} \\ \\ \ga{grid F} & \ga{grid F} \\ \\ \ga{grid F} & \ga{grid F} \\ \end{array} $ \newpage % «questao-1-gab» (to ".questao-1-gab") % (c2m231p1p 5 "questao-1-gab") % (c2m231p1a "questao-1-gab") % (c2m222p1p 5 "questao-1-gab") % (c2m222p1a "questao-1-gab") % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T s : sqrt(1-4*x^2); %T f : x^3 * s; %T F : integrate(f, x); %T G : (1/16) * (s^5/5 - s^3/3); %T g : diff(G, x); %T expand(rat(g*s)); %T expand(rat(f*s)); {\bf Questão 1: gabarito} $$\scalebox{0.6}{$ \begin{array}{rcl} \ints{s^3 \sqrt{1-s^2}} %&=& \intu{\frac18 u^3 \sqrt{1-u^2}·\frac12} \\ %&=& \frac1{16}\intu{u^3 \sqrt{1-u^2}} \\ &=& \intth{(\senθ)^3 (\cosθ)(\cosθ)} \\ &=& \intth{(\cosθ)^2 (\senθ)^3} \\ &=& \intth{(\cosθ)^2 (\senθ)^2 (\senθ)} \\ &=& \intc{c^2 (1-c^2)(-1)} \\ &=& \intc{c^2 (c^2-1)} \\ &=& \intc{c^4 - c^2} \\ &=& \frac{c^5}{5} - \frac{c^3}{3} \\ &=& \frac{(\cosθ)^5}{5} - \frac{(\cosθ)^3}{3} \\ &=& \frac{\sqrt{1-s^2}^5}{5} - \frac{\sqrt{1-s^2}^3}{3} \\ \\ \frac{d}{ds}(\frac{\sqrt{1-s^2}^5}{5} - \frac{\sqrt{1-s^2}^3}{3}) &=& \frac15 \frac{d}{ds} \sqrt{1-s^2}^5 - \frac13 \frac{d}{ds} \sqrt{1-s^2}^3 \\ &=& \frac15 \frac{d}{ds} (1-s^2)^{5/2} - \frac13 \frac{d}{ds} (1-s^2)^{3/2} \\ &=& \frac15 \frac52 (1-s^2)^{3/2} \frac{d}{ds}(1-s^2) - \frac13 \frac32 (1-s^2)^{1/2} \frac{d}{ds}(1-s^2) \\ &=& \frac15 \frac52 (1-s^2)^{3/2} (-2s) - \frac13 \frac32 (1-s^2)^{1/2} (-2s) \\ &=& \frac15 \frac52 (-2)s (1-s^2)^{3/2} - \frac13 \frac32 (-2)s (1-s^2)^{1/2} \\ &=& - s (1-s^2)^{3/2} + s (1-s^2)^{1/2} \\ &=& - s (1-s^2)^{2/2} (1-s^2)^{1/2} + s (1-s^2)^{1/2} \\ &=& - s (1-s^2) (1-s^2)^{1/2} + s (1-s^2)^{1/2} \\ &=& (- s (1-s^2) + s) (1-s^2)^{1/2} \\ &=& (- s + s^3 + s) (1-s^2)^{1/2} \\ &=& s^3 \sqrt{1-s^2} \\ \end{array} \hspace*{-3cm} \begin{array}{l} % \bsm{u = 2x \\ % u^2 = 4x^2 \\ % x = u/2 \\ % x^3 = u^3/8 \\ % du = 2dx \\ % dx = \frac12 du \\ % } \\ % \\[-7pt] \bsm{s = \senθ \\ s^2 = (\senθ)^2 \\ 1-s^2 = (\cosθ)^2 \\ \sqrt{1-s^2} = \cosθ \\ \frac{ds}{dθ} = \cosθ \\ ds = \cosθ\,dθ \\ } \\ \\[-7pt] \bsm{c = \cosθ \\ \frac{dc}{dθ} = -\senθ \\ dc = -\senθ\,dθ \\ (-1)dc = \senθ\,dθ \\ (\senθ)^2 = 1-c^2 \\ } \\ \\ \vspace*{6cm} \end{array} $} $$ \newpage % «questao-2-gab» (to ".questao-2-gab") % (c2m231p1p 6 "questao-2-gab") % (c2m231p1a "questao-2-gab") % (c2m222p1p 6 "questao-2-gab") % (c2m222p1a "questao-2-gab") {\bf Questão 2: gabarito} $$\begin{array}{rcl} \intx{\frac{\cos(2+\sqrt x)}{2 \sqrt x}} &=& \intu{\cos(2+u)} \\ &=& \intv{\cos v} \\ &=& \sen v \\ &=& \sen(2+u) \\ &=& \sen(2+\sqrt{x}) \\ \\[-5pt] \ddx \sen(2+\sqrt{x}) &=& \cos(2+\sqrt{x}) \, \ddx(2+\sqrt{x}) \\ &=& \cos(2+\sqrt{x}) \, \ddx x^{1/2} \\ &=& \cos(2+\sqrt{x}) \, \frac{1}{2} x^{-1/2} \\ &=& \cos(2+\sqrt{x}) \, \frac{1}{2\sqrt{x}} \\ &=& \frac{\cos(2+\sqrt{x})}{2\sqrt{x}} \\ \end{array} %\qquad \begin{array}{c} \subst{u \;=\; \sqrt{x} \;=\; x^{1/2} \\ \frac{du}{dx} \;=\; \frac12 x^{-1/2} \;=\; \frac{1}{2\sqrt{x}} \\ du \;=\; \frac{1}{2\sqrt{x}} dx \\ u^2 \;=\; x \\ x \;=\; u^2 \\ } \\ \\[-5pt] \subst{v \;=\; 2+u \\ dv \;=\; du \\ v-2 \;=\; u \\ u \;=\; v-2 \\ } \\ \\ \vspace*{1.5cm} \end{array} $$ \newpage % «questao-3-gab» (to ".questao-3-gab") % (c2m231p1p 7 "questao-3-gab") % (c2m231p1a "questao-3-gab") % (c2m222p1p 8 "questao-4-gab") % (c2m222p1a "questao-4-gab") {\bf Questão 3: gabarito} $$\scalebox{0.6}{$ \begin{array}{rcl} \frac{2x+3}{(x-4)(x+5)} &=& \frac{A}{x-4} + \frac{B}{x+5} \\ &=& \frac{A(x+5)}{(x-4)(x+5)} + \frac{B(x-4)}{(x-4)(x+5)} \\ &=& \frac{A(x+5)+B(x-4)}{(x-4)(x+5)} \\ &=& \frac{Ax+5A+Bx-4B}{(x-4)(x+5)} \\ &=& \frac{(A+B)x+(5A-4B)}{(x-4)(x+5)} \\ \\[-5pt] 2x+3 &=& (A+B)x+(5A-4B) \\ A+B &=& 2 \\ 5A-4B &=& 3 \\ A &=& 11/9 \\ B &=& 7/9 \\ \\[-5pt] \frac{2x+3}{(x-4)(x+5)} &=& \frac{11/9}{x-4} + \frac{7/9}{x+5} \\ \intx{\frac{2x+3}{(x-4)(x+5)}} &=& \intx{\frac{11/9}{x-4} + \frac{7/9}{x+5}} \\ &=& \frac{11}{9}\intx{\frac{1}{x-4}} + \frac{7}{9}\intx{\frac{1}{x+5}} \\ &=& \frac{11}{9} \ln |x-4| + \frac{7}{9} \ln |x+5| \\ \\[-5pt] \ddx(\frac{11}{9} \ln |x-4| + \frac{7}{9} \ln |x+5|) &=& \frac{11}{9} \frac{1}{x-4} + \frac{7}{9} \frac{1}{x+5} \\ &=& \frac{\frac{11}{9}(x+5) + \frac{7}{9}(x-4)}{(x-4)(x+5)} \\ &=& \frac{(\frac{11}{9}+ \frac{7}{9})x + (\frac{55}{9} - \frac{28}{9})}{(x-4)(x+5)} \\ &=& \frac{2x+3}{(x-4)(x+5)} \\ \end{array} $} $$ % (setq eepitch-preprocess-regexp "^") % (setq eepitch-preprocess-regexp "^%T ?") % %T * (eepitch-maxima) %T * (eepitch-kill) %T * (eepitch-maxima) %T linsolve ([A+B=4, 3*A-2*B=5], [A, B]); %T linsolve ([A+B=2, 5*A-4*B=3], [A, B]); %T %T f : (4*x + 5) / ((x-2)*(x+3)); %T partfrac(f, x); %T F : integrate(f, x); \newpage % «questao-4-gab» (to ".questao-4-gab") % (c2m231p1p 8 "questao-4-gab") % (c2m231p1a "questao-4-gab") % (c2m222p1p 7 "questao-3-gab") % (c2m222p1a "questao-3-gab") % (c2m221atisp 21 "1-then-2") % (c2m221atisa "1-then-2") {\bf Questão 4: gabarito} %L Pict2e.bounds = PictBounds.new(v(0,-4), v(4,4)) %L spec = "(0,0)--(2,2)c (2,-2)o--(4,-4)" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("F(x)"):output() %L %L Pict2e.bounds = PictBounds.new(v(0,-4), v(4,4)) %L spec = "(0,1)--(2,1)o (2,-1)o--(4,-1)" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("F'(x)"):output() %L %L spec = "(0,1)--(2,1)o (2,-1)c--(4,-1)" %L pwsa = PwSpec.from(spec) %L pf = PictList{ %L pwsa:topwfunction():areaify(1, 3):Color("Orange"), %L pws:topict() %L } %L pf:pgat("pgatc"):sa("int F'(x)"):output() \pu \msk \unitlength=5pt $$F(x) = \ga{F(x)} \quad F'(x) = \ga{F'(x)} \quad \textstyle \Intx{1}{3}{F'(x)} = \ga{int F'(x)} = 0 $$ \def\und#1#2{\underbrace{#1}_{#2}} $$\und{ \und{\Intx{1}{3}{F'(x)}}{0} \;=\; \und{\und{\und{\difx{1}{3}{F(x)}}{F(3)-F(1)}}{(-3)-1}}{-4} }{\False} $$ % (c2m221vsbp 6 "questao-1-gab") % (c2m221vsba "questao-1-gab") \newpage % «questao-5-gab» (to ".questao-5-gab") % (c2m231p1p 9 "questao-5-gab") % (c2m231p1a "questao-5-gab") % (c2m222p1p 9 "questao-5-gab") % (c2m222p1a "questao-5-gab") {\bf Questão 5: gabarito} \unitlength=10pt $$\begin{array}{r} f(x) \;=\; \ga{fig f} \\ \\ F(x) \;=\; \Intt{5}{x}{f(t)} \;=\; \ga{fig F} \\ \end{array} $$ % «links» (to ".links") \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "c2p1" % ee-tla: "c2m231p1" % End: