Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2022-2-C2-TFC1-e-TFC2.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2022-2-C2-TFC1-e-TFC2.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2022-2-C2-TFC1-e-TFC2.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2022-2-C2-TFC1-e-TFC2.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2022-2-C2-TFC1-e-TFC2.pdf")) % (defun e () (interactive) (find-LATEX "2022-2-C2-TFC1-e-TFC2.tex")) % (defun o () (interactive) (find-LATEX "2022-2-C2-TFC1-e-TFC2.tex")) % (defun u () (interactive) (find-latex-upload-links "2022-2-C2-TFC1-e-TFC2")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2022-2-C2-TFC1-e-TFC2.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2022-2-C2-TFC1-e-TFC2") % (find-pdf-page "~/LATEX/2022-2-C2-TFC1-e-TFC2.pdf") % (find-sh0 "cp -v ~/LATEX/2022-2-C2-TFC1-e-TFC2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2022-2-C2-TFC1-e-TFC2.pdf /tmp/pen/") % (find-xournalpp "/tmp/2022-2-C2-TFC1-e-TFC2.pdf") % file:///home/edrx/LATEX/2022-2-C2-TFC1-e-TFC2.pdf % file:///tmp/2022-2-C2-TFC1-e-TFC2.pdf % file:///tmp/pen/2022-2-C2-TFC1-e-TFC2.pdf % http://angg.twu.net/LATEX/2022-2-C2-TFC1-e-TFC2.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/") % (find-CN-aula-links "2022-2-C2-TFC1-e-TFC2" "2" "c2m222tfcs" "c2tf") % «.defs» (to "defs") % «.title» (to "title") % «.links» (to "links") % «.def-particao» (to "def-particao") % «.def-inf-e-sup» (to "def-inf-e-sup") % «.def-integral» (to "def-integral") % «.exercicio-2» (to "exercicio-2") % «.exercicio-3» (to "exercicio-3") % «.exercicio-4» (to "exercicio-4") % % <videos> % Video (not yet): % (find-ssr-links "c2m222tfcs" "2022-2-C2-TFC1-e-TFC2") % (code-eevvideo "c2m222tfcs" "2022-2-C2-TFC1-e-TFC2") % (code-eevlinksvideo "c2m222tfcs" "2022-2-C2-TFC1-e-TFC2") % (find-c2m222tfcsvideo "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L dofile "QVis1.lua" -- (find-LATEX "QVis1.lua") %L dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua") %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") %L Pict2e.__index.suffix = "%" \pu \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\u#1{\par{\footnotesize \url{#1}}} \def\drafturl{http://angg.twu.net/LATEX/2022-2-C2.pdf} \def\drafturl{http://angg.twu.net/2022.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "edrxgac2.tex" "C2") \def\Rext{\overline{\R}} \def\into{\overline ∫} \def\intu{\underline∫} \def\intou{\overline{\underline∫}} \def\INTx#1#2#3#4{#1_{x=#2}^{x=#3} #4 \, dx} \def\INTP #1#2#3{#1_{#2} #3 \, dx} \def\mname#1{\ensuremath{[\text{#1}]}} \def\minf{\mname{inf}} \def\msup{\mname{sup}} \def\sse {\text{sse}} \sa{into_P f(x) dx}{\INTP{\into} {P}{f(x)}} \sa{intu_P f(x) dx}{\INTP{\intu} {P}{f(x)}} \sa{intou_P f(x) dx}{\INTP{\intou}{P}{f(x)}} \sa{into_ab2k f(x) dx}{\INTP{\into} {[a,b]_{2^k}}{f(x)}} \sa{intu_ab2k f(x) dx}{\INTP{\intu} {[a,b]_{2^k}}{f(x)}} \sa{intou_ab2k f(x) dx}{\INTP{\intou}{[a,b]_{2^k}}{f(x)}} \sa{into_xab f(x) dx}{\INTx{\into} {a}{b}{f(x)}} \sa{intu_xab f(x) dx}{\INTx{\intu} {a}{b}{f(x)}} \sa{intou_xab f(x) dx}{\INTx{\intou}{a}{b}{f(x)}} \sa{int_xab f(x) dx}{\INTx{\int} {a}{b}{f(x)}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m222tfcsp 1 "title") % (c2m222tfcsa "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2022.2} \bsk Aula 19: o TFC1 e o TFC2. \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://angg.twu.net/2022.2-C2.html} \end{center} \newpage % % «links» (to ".links") % % (c2m222tfcsp 2 "links") % % (c2m222tfcsa "links") % % Infs e sups % % (c2m222srp 25 "na-semana-academica") % % (c2m222sra "na-semana-academica") % % Partições % % (c2m212somas1p 9 "particoes") % % (c2m212somas1a "particoes") % % Partição preferida % % Partições cada vez mais finas % % (c2m202escadasp 4 "exercicio-2") % % (c2m202escadas "exercicio-2") % % Definição da integral % % (c2m221isp 19 "definicao-integral") % % (c2m221isa "definicao-integral") % % Funções de Dirichlet (a original e a diagonal) % % (c2m212somas2p 51 "dirichlet") % % (c2m212somas2a "dirichlet") % % TFC1 no vídeo do Mathologer (localizar) % % (find-TH "mathologer-calculus-easy" "legendas") % % TFC2 no vídeo do Mathologer (localizar) % % Revisão de derivadas laterais % % (c2m221tfc1p 11 "exercicio-4-dicas") % % (c2m221tfc1a "exercicio-4-dicas" "laterais") % % Quando os TFCs não valem % % Quais livros usam ai e bi? Quais usam $Δx$? % % Animacoes sobre def integral e TFC1 % % % (find-books "__analysis/__analysis.el" "leithold" "5.5. A integral definida") % % (find-books "__analysis/__analysis.el" "martins-martins" "Integral Definida") % % (find-books "__analysis/__analysis.el" "miranda" "7.2. Integral definida") % (find-books "__analysis/__analysis.el" "thomas" "5.3 The definite integral") \newpage Os próximos 3 slides são uma versão melhorada (?) das definições de partições, de inf e sup, e de integral definida destes PDFs antigos: \ssk Partições: {\scriptsize % (c2m212somas1p 9 "particoes") % (c2m212somas1a "particoes") % http://angg.twu.net/LATEX/2021-2-C2-somas-1.pdf#page=9 \url{http://angg.twu.net/LATEX/2021-2-C2-somas-1.pdf\#page=9} (até a p.12) } \ssk Infs e sups: {\scriptsize % (c2m221isp 2 "uma-figura") % (c2m221isa "uma-figura") % http://angg.twu.net/LATEX/2022-1-C2-infs-e-sups.pdf#page=2 \url{http://angg.twu.net/LATEX/2022-1-C2-infs-e-sups.pdf\#page=2} (até a p.15) } \ssk Integral definida como limite -- definições: {\scriptsize % (c2m221isp 16 "aproximacoes-por-cima") % (c2m221isa "aproximacoes-por-cima") % http://angg.twu.net/LATEX/2022-1-C2-infs-e-sups.pdf#page=16 \url{http://angg.twu.net/LATEX/2022-1-C2-infs-e-sups.pdf\#page=16} (até a p.21) % (c2m212somas2p 35 "exercicio-13") % (c2m212somas2a "exercicio-13") % http://angg.twu.net/LATEX/2021-2-C2-somas-2.pdf#page=35 \url{http://angg.twu.net/LATEX/2021-2-C2-somas-2.pdf\#page=35} -- $[a,b]_n$ % (c2m212somas1p 16 "exercicio-9-dicas") % (c2m212somas1a "exercicio-9-dicas") % http://angg.twu.net/LATEX/2021-1-C2-somas-1.pdf#page=16 \url{http://angg.twu.net/LATEX/2021-1-C2-somas-1.pdf\#page=16} -- simplificações } \ssk Integral definida como limite -- uma animação: {\scriptsize % (c2m221tfc1p 35 "descontinuidades-2") % (c2m221tfc1a "descontinuidades-2") % http://angg.twu.net/LATEX/2022-1-C2-TFC1.pdf#page=35 \url{http://angg.twu.net/LATEX/2022-1-C2-TFC1.pdf\#page=35} (até a p.41) } \newpage % «def-particao» (to ".def-particao") % (c2m222tfcsp 3 "def-particao") % (c2m222tfcsa "def-particao") {\bf A definição de partição} \scalebox{0.85}{\def\colwidth{11cm}\firstcol{ Se $P$ é um subconjunto \ColorRed{finito} e \ColorRed{não-vazio} de $\R$, então podemos interpretar $P$ como uma partição... Por exemplo, se $P=\{200,20,42,99,63,33,20,20\}$ então $P=\{20,33,42,63,99,200\}$, e aí vamos interpretar esse conjunto de 6 pontos -- ordenados em ordem crescente -- como uma partição do intervalo $I = [a,b] = [20,200]$ em 5 subintervalos (``$N=5$''), assim: $$\begin{array}{ccccccl} 20 & 33 & 42 & 63 & 99 & 200 \\ x_0 & x_1 & x_2 & x_3 & x_4 & x_5 \\ a_1 & b_1 & & & & & I_1=[a_1,b_1] \\ & a_2 & b_2 & & & & I_2=[a_2,b_2] \\ & & a_3 & b_3 & & & I_3=[a_3,b_3] \\ & & & a_4 & b_4 & & I_4=[a_4,b_4] \\ & & & & a_5 & b_5 & I_5=[a_5,b_5] \\ a & & & & & b & I = [a,b] = [x_0,x_N]\\ \end{array} $$ }\anothercol{ }} \newpage % «def-inf-e-sup» (to ".def-inf-e-sup") % (c2m222tfcsp 4 "def-inf-e-sup") % (c2m222tfcsa "def-inf-e-sup") % (c2m221isp 3 "algumas-definicoes") % (c2m221isa "algumas-definicoes") {\bf As definições de inf e sup} \scalebox{0.9}{\def\colwidth{10cm}\firstcol{ Digamos que $f:\R→\R$ e $B⊂\R$. Vamos definir $\inf(f(B))$ e $\sup(f(B))$ --- e também $\inf(D)$ e $\sup(D)$, pra $D⊂\R$ --- desta forma: % $$\begin{array}{rcl} \Rext &=& \R∪\{-∞,+∞\} \\ C &=& \setofst{(x,f(x))}{x∈B} \\ D &=& \setofst{f(x)}{x∈B} \\ D' &=& \setofst{y∈\R}{∃x∈B.\ f(x)=y} \\ L &=& \setofst{y∈\Rext}{∀d∈D.\;y≤d} \\ U &=& \setofst{y∈\Rext}{∀d∈D.\;d≤y} \\ (α=\inf(D)) &=& α∈L ∧ (∀ℓ∈L.\;ℓ \le α) \\ (β=\sup(D)) &=& β∈U ∧ (∀u∈U.\;β \le u) \\ \end{array} $$ Com isto podemos definir a integral definida. A definição formal dela está na próxima página. }\anothercol{ }} \newpage % «def-integral» (to ".def-integral") % (c2m222tfcsp 5 "def-integral") % (c2m222tfcsa "def-integral") \vspace*{-0.25cm} $$\scalebox{0.44}{$ \begin{array}{rcl} [a,b]_N &=& \setofst{a+k(\frac{b-a}{N})}{k∈\{0,\ldots,N\}} \\ &=& \{ a+0(\frac{b-a}{N}), \; a+1(\frac{b-a}{N}), \; \ldots, \; a+N(\frac{b-a}{N}) \} \\ &=& \{ a, \; a + \frac{b-a}{N}, \; a + 2\frac{b-a}{N}, \; a + 3\frac{b-a}{N}, \; \ldots, \; b\} \\ \D \ga{into_P f(x) dx} &=& \msup_P \\[-5pt] &=& \D \sum_{i=1}^{n} \sup(f([a_i,b_i])) (b_i-a_i) \\ \D \ga{intu_P f(x) dx} &=& \minf_P \\[-5pt] &=& \D \sum_{i=1}^{n} \inf(f([a_i,b_i])) (b_i-a_i) \\ \\[-5pt] \D \ga{intou_P f(x) dx} &=& \D \INTP{\into}{P}{f(x)} - \INTP{\intu}{P}{f(x)} \\ \\[-5pt] \D \ga{into_xab f(x) dx} &=& \D \lim_{k→∞} \ga{into_ab2k f(x) dx} \\ \D \ga{intu_xab f(x) dx} &=& \D \lim_{k→∞} \ga{intu_ab2k f(x) dx} \\ \\[-5pt] \D \ga{intou_xab f(x) dx} &=& \D \ga{into_xab f(x) dx} - \ga{intu_xab f(x) dx} \\ \\[-5pt] \D \left( \ga{int_xab f(x) dx} \text{\;\;existe} \right) &=& \D \left( \ga{into_xab f(x) dx} = \ga{intu_xab f(x) dx} \right) \\ \\[-7pt] &=& \D \left( \ga{intou_xab f(x) dx} = 0 \right) \\ \\[-7pt] \D \ga{int_xab f(x) dx} &=& \D \ga{into_xab f(x) dx} \qquad \text{(se a integral existir)} \\ \\[-7pt] &=& \D \ga{intu_xab f(x) dx} \qquad \text{(se a integral existir)} \\ \end{array} $} $$ \newpage {\bf Exercício 1.} Leia isto aqui: \ssk {\scriptsize % (c2m212somas1p 9 "particoes") % (c2m212somas1a "particoes") % http://angg.twu.net/LATEX/2021-2-C2-somas-1.pdf#page=9 \url{http://angg.twu.net/LATEX/2021-2-C2-somas-1.pdf\#page=9} (até a p.12) } \msk a) Seja $P=\{4,2,1,1.5\}$. Interprete $P$ como uma partição. Diga quem são o $N$, o $a$ e o $b$ dela e monte a tabela dos subintervalos dela (p.10 do link acima). \msk b) Seja $P=[2,4]_6$. Diga quem são os pontos da partição $P$. \msk c) Seja $P=[2,5]_{2^3}$. Diga quem são os pontos da partição $P$. \newpage % «exercicio-2» (to ".exercicio-2") % (c2m222tfcsp 6 "exercicio-2") % (c2m222tfcsa "exercicio-2") % (c2m221isp 12 "exercicio-5") % (c2m221isa "exercicio-5") {\bf Exercício 2.} %L Pict2e.bounds = PictBounds.new(v(0,0), v(9,7)) %L spec = "(0,3)--(2,1)o (2,3)c (2,5)o--(7,0)" %L pws = PwSpec.from(spec) %L curve = pws:topict() %L p = PictList { curve:prethickness("2pt") } %L p:addputstrat(v(2.7,5.5), "\\cell{(2,5)}") %L p:addputstrat(v(7.7,0.5), "\\cell{(7,0)}") %L p:pgat("pgatc"):preunitlength("17pt"):sa("Exercicio 2"):output() \pu \msk Sejam % $f(x) = \scalebox{0.5}{$\ga{Exercicio 2}$}$ e $B=[1,3]$. \msk Represente graficamente B, $f(B)$ e os conjuntos abaixo: % $$\begin{array}{rcl} % \Rext &=& \R∪\{-∞,+∞\} \\ C &=& \setofst{(x,f(x))}{x∈B} \\ D &=& \setofst{f(x)}{x∈B} \\ D' &=& \setofst{y∈\R}{∃x∈B.\ f(x)=y} \\ L &=& \setofst{y∈\Rext}{∀d∈D.\;y≤d} \\ U &=& \setofst{y∈\Rext}{∀d∈D.\;d≤y} \\ % (α=\inf(D)) &=& α∈L ∧ (∀ℓ∈L.\;ℓ \le α) \\ % (β=\sup(D)) &=& β∈U ∧ (∀u∈U.\;β \le u) \\ \end{array} $$ \newpage % «exercicio-3» (to ".exercicio-3") % (c2m222tfcsp 8 "exercicio-3") % (c2m222tfcsa "exercicio-3") {\bf Exercício 3.} \scalebox{0.9}{\def\colwidth{9cm}\firstcol{ Sejam % $f(x) = \scalebox{0.5}{$\ga{Exercicio 2}$}$ \; . e $P=\{1,3,4,5\}$. \msk Represente graficamente: \msk a) $\ga{into_P f(x) dx}$ \msk b) $\ga{intu_P f(x) dx}$ \msk c) $\ga{intou_P f(x) dx}$ \msk d) $\INTP{\intou}{[1,5]_2}{f(x)}$ \msk e) $\INTP{\intou}{[1,5]_4}{f(x)}$ }\anothercol{ }} \newpage % «exercicio-4» (to ".exercicio-4") % (c2m222tfcsp 9 "exercicio-4") % (c2m222tfcsa "exercicio-4") {\bf Exercício 4.} \scalebox{0.9}{\def\colwidth{12cm}\firstcol{ Dê uma olhada nesses 4 slides sobre a função de Dirichlet: \ssk {\scriptsize % (c2m212somas2p 51 "dirichlet") % (c2m212somas2a "dirichlet") % http://angg.twu.net/LATEX/2021-2-C2-somas-2.pdf#page=51 \url{http://angg.twu.net/LATEX/2021-2-C2-somas-2.pdf\#page=51} (até a p.54) } \ssk Sejam: % $$\begin{array}{rcl} f(x) &=& \begin{cases} 0 & \text{quando $x∈\Q$}, \\ 1 & \text{quando $x∈\R∖\Q$} \\ \end{cases} \; , \\ g(x) &=& f(x) + x. \\ \end{array} $$ Represente graficamente: \msk a) $g(x)$ b) $\INTP{\intou}{[0,4]_1}{g(x)}$ c) $\INTP{\intou}{[0,4]_2}{g(x)}$ d) $\INTP{\intou}{[0,4]_4}{g(x)}$ e) $\INTP{\intou}{[0,4]_8}{g(x)}$ }\anothercol{ }} % (c2m212somas2p 51 "dirichlet") % (c2m212somas2a "dirichlet") \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2022-2-C2-TFC1-e-TFC2 veryclean make -f 2019.mk STEM=2022-2-C2-TFC1-e-TFC2 pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c2tf" % ee-tla: "c2m222tfcs" % End: