Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file: (find-LATEX "2020J-ops-new.tex") % Newer version: (find-LATEX "2021planar-HAs-2.tex") % % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020J-ops-new.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020J-ops-new.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020J-ops-new.pdf")) % (defun e () (interactive) (find-LATEX "2020J-ops-new.tex")) % (defun u () (interactive) (find-latex-upload-links "2020J-ops-new")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020J-ops-new.pdf") % (find-sh0 "cp -v ~/LATEX/2020J-ops-new.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020J-ops-new.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020J-ops-new.pdf % file:///tmp/2020J-ops-new.pdf % file:///tmp/pen/2020J-ops-new.pdf % http://angg.twu.net/LATEX/2020J-ops-new.pdf % (find-LATEX "2019.mk") % % Based on: (find-LATEX "2019J-ops.tex") % (find-LATEX "2019J-ops-arxiv.tex") % «.title» (to "title") % «.abstract» (to "abstract") % «.toc» (to "toc") % «.parts» (to "parts") \documentclass[oneside]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{tocloft} % (find-es "tex" "tocloft") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{stmaryrd} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dednat6file "demo-write-dnt.tex") \usepackage{ifluatex} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \catcode`¹=13 \def¹{^{*}} \catcode`²=13 \def²{^{**}} \catcode`³=13 \def³{^{***}} % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") \addbibresource{catsem-u.bib} % (find-LATEX "catsem-u.bib") % % (find-es "tex" "geometry") \begin{document} \input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") \input 2019J-ops-defs.tex % (find-LATEX "2019J-ops-defs.tex") \ifluatex \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} \else \input\jobname.dnt \def\pu{} \def\directlua#1{} \fi % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") \pu \def\ovl{\overline} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % (find-LATEX "idarct/idarct-preprint.tex") % «title» (to ".title") % (jopp 1 "title") % (jona "title") \title{Planar Heyting Algebras for Children 2: Local Operators, J-Operators, and Slashings} \author{Eduardo Ochs} \maketitle % _ _ _ _ % / \ | |__ ___| |_ _ __ __ _ ___| |_ % / _ \ | '_ \/ __| __| '__/ _` |/ __| __| % / ___ \| |_) \__ \ |_| | | (_| | (__| |_ % /_/ \_\_.__/|___/\__|_| \__,_|\___|\__| % % «abstract» (to ".abstract") % (jopp 1 "abstract") % (jop "abstract") \begin{abstract} Choose a topos $\calE$. There are several different ``notions of sheafness'' on $\calE$. How do we visualize them? Let's refer to the classifier object of $\calE$ as $Ω$, and to its Heyting Algebra of truth-values, $\Sub(1_\calE)$, as $H$; we will sometimes call $H$ the ``logic'' of the topos. There is a well-known way of representing notions of sheafness as morphisms $j:Ω→Ω$, but these `$j$'s yield big diagrams when we draw them explicitly; here we will see a way to represent these `$j$'s as maps $J:H→H$ in a way that is much more manageable. In the previous paper of this series --- called \cite{OchsPH1} from here on --- we showed how certain toy models of Heyting Algebras, called ``ZHAs'', can be used to develop visual intuition for how Heyting Algebras and Intuitionistic Propositional Logic work; here we will extend that to sheaves. The full idea is this: {\sl notions of sheafness} correspond to {\sl local operators} and vice-versa; {\sl local operators} correspond to {\sl J-operators} and vice-versa; if our Heyting Algebra $H$ is a ZHA then {\sl J-operators} correspond to {\sl slashings} on $H$, and vice-versa; {\sl slashings} on $H$ correspond to {\sl ``sets of question marks''} and vice-versa, and each set of question marks induces a notion of {\sl erasing and reconstructing}, which induces a sheaf. Also, every ZHA $H$ corresponds to an {(acyclic) 2-column graph}, and vice-versa, and for any two-column graph $(P,A)$ the logic of the topos $\Set^{(P,A)}$ is exactly the ZHA $H$ associated to $(P,A)$. The introduction of \cite{OchsPH1} discusses two different senses in which a mathematical text can be ``for children''. The first sense involves some precise metamathetical tools for transfering knowledge back and forth between a general case ``for adults'' and a toy model ``for children''; the second sense is simply that the text's presentation has few prerequisites and never becomes too abstract. Here we will use the second sense: everything here, except for the last section, should be accessible to students who have taken a course on Discrete Mathematics and read \cite{OchsPH1}. This means that categories, toposes, sheaves and the maps $j:Ω→Ω$ only appear in the last section, and before that we deal only with the J-operators $J:H→H$, how they correspond to slashings and sets of question marks, and how they form an algebra. \end{abstract} % (find-books "__cats/__cats.el" "bell") % (find-belltpage (+ 14 163) "modality") % (find-belltpage (+ 14 164) "universal closure operation") % % (find-books "__cats/__cats.el" "johnstone-elephant") % (find-elephantpage (+ 17 195) "A4.4 Local Operators") % % (find-books "__cats/__cats.el" "fourman-scott") % (find-slnm0753page (+ 16 324) "J-operators") % TODO: add this (and an abstract): % (ph2p 4 "piccs-and-slashings") % (ph2 "piccs-and-slashings") % «abstract-arxiv» (to ".abstract-arxiv") % % Choose a topos $E$. There are several different "notions of % sheafness" on $E$. How do we visualize them? % % Let's refer to the classifier object of $E$ as $\Omega$, and to its % Heyting Algebra of truth-values, $Sub(1_E)$, as $H$; we will % sometimes call $H$ the "logic" of the topos. There is a well-known % way of representing notions of sheafness as morphisms $j:\Omega\to % \Omega$, but these `$j$'s yield big diagrams when we draw them % explicitly; here we will see a way to represent these `$j$'s as maps % $J:H\to H$ in a way that is much more manageable. % % In the previous paper of this series we showed how certain toy % models of Heyting Algebras, called "ZHAs", can be used to develop % visual intuition for how Heyting Algebras and Intuitionistic % Propositional Logic work; here we will extend that to sheaves. The % full idea is this: notions of sheafness correspond to local % operators and vice-versa; local operators correspond to J-operators % and vice-versa; if our Heyting Algebra $H$ is a ZHA then J-operators % correspond to slashings on $H$, and vice-versa; slashings on $H$ % correspond to "sets of question marks" and vice-versa, and each set % of question marks induces a notion of erasing and reconstructing, % which induces a sheaf. Also, every ZHA $H$ corresponds to an % (acyclic) 2-column graph, and vice-versa, and for any two-column % graph $(P,A)$ the logic of the topos $\mathbf{Set}^{(P,A)}$ is % exactly the ZHA $H$ associated to $(P,A)$. % _____ ___ ____ % |_ _/ _ \ / ___| % | || | | | | % | || |_| | |___ % |_| \___/ \____| % % «toc» (to ".toc") % (jonp 2 "toc") % (jona "toc") % (favp 2 "toc") % (fav "toc") % (find-es "tex" "tocloft") \renewcommand{\cfttoctitlefont}{\bfseries} \setlength{\cftbeforesecskip}{2.5pt} \tableofcontents % \end{document} % ____ _ % | _ \ __ _ _ __| |_ ___ % | |_) / _` | '__| __/ __| % | __/ (_| | | | |_\__ \ % |_| \__,_|_| \__|___/ % % «parts» (to ".parts") % (jonp 2 "parts") % (jon "parts") \newpage \input 2019J-ops-slashings.tex % (find-LATEX "2019J-ops-slashings.tex") \newpage \input 2019J-ops-logic.tex % (find-LATEX "2019J-ops-logic.tex") \newpage \input 2019J-ops-midway.tex % (find-LATEX "2019J-ops-midway.tex") \newpage \input 2019J-ops-cubes.tex % (find-LATEX "2019J-ops-cubes.tex") \newpage \input 2019J-ops-valuations.tex % (find-LATEX "2019J-ops-valuations.tex") \newpage \input 2019J-ops-algebra.tex % (find-LATEX "2019J-ops-algebra.tex") \newpage \input 2019J-ops-categories.tex % (find-LATEX "2019J-ops-categories.tex") \newpage \input 2019J-ops-classifier.tex % (find-LATEX "2019J-ops-classifier.tex") \newpage \input 2019J-ops-kan.tex % (find-LATEX "2019J-ops-kan.tex") %L write_dnt_file() \pu % (find-LATEX "2019ilha-grande-poster-a4.tex" "references") \newpage \printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020J-ops-new veryclean make -f 2019.mk STEM=2020J-ops-new pdf % Local Variables: % coding: utf-8-unix % ee-tla: "jon" % End: