Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file: (find-LATEX "2019J-ops-valuations.tex") % See: (find-LATEX "2020J-ops-new.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019J-ops-valuations.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019J-ops-valuations.pdf")) % (defun e () (interactive) (find-LATEX "2019J-ops-valuations.tex")) % (defun u () (interactive) (find-latex-upload-links "2019J-ops-valuations")) % (find-pdf-page "~/LATEX/2019J-ops-valuations.pdf") % (find-sh0 "cp -v ~/LATEX/2019J-ops-valuations.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019J-ops-valuations.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019J-ops-valuations.pdf % file:///tmp/2019J-ops-valuations.pdf % file:///tmp/pen/2019J-ops-valuations.pdf % http://angg.twu.net/LATEX/2019J-ops-valuations.pdf % (find-LATEX "2019.mk") % «.valuations» (to "valuations") \directlua{tf_push("2019J-ops-valuations.tex")} % __ __ _ _ _ % \ \ / /_ _| |_ _ __ _| |_(_) ___ _ __ ___ % \ \ / / _` | | | | |/ _` | __| |/ _ \| '_ \/ __| % \ V / (_| | | |_| | (_| | |_| | (_) | | | \__ \ % \_/ \__,_|_|\__,_|\__,_|\__|_|\___/|_| |_|___/ % % «valuations» (to ".valuations") % (jonp 16 "valuations") % (jov "valuations") % (p2lp 7 "valuations") % (p2l "valuations") \section{Valuations} \label {valuations} Let $H_\odot$ and $J_\odot$ be a ZHA and a J-operator on it, and let $v_\odot$ be a function from the set $\{P,Q\}$ to $H$. By an abuse of language $v_\odot$ will also denote the triple $(H_\odot, J_\odot, v_\odot)$ --- and by a second abuse of language $v_\odot$ will also denote the obvious extension of $v_\odot: \{P,Q\}→H$ to the set of all valid expressions formed from $P$, $Q$, $·^*$, $⊤$, $⊥$, and the connectives. Let $i,j∈\{0,\ldots,7\}$. Then $(\oand_i,\oand_j)∈\SCube^*_\land$ means that $\oand_i ≤ \oand_j$ is a theorem, and so $v_\odot(\oand_i) ≤ v_\odot(\oand_j)$ holds; i.e., % $$\SCube^*_\land ⊆ \setofst {(\oand_i,\oand_j)} {i,j∈\{0,\ldots,7\}, \; v_\odot(\oand_i) ≤ v_\odot(\oand_j)} $$ % and the same for: % $$\begin{array}{c} \SCube^*_\lor ⊆ \setofst {(\oor_i,\oor_j)} {i,j∈\{0,\ldots,7\}, \; v_\odot(\oor_i) ≤ v_\odot(\oor_j)} \\ \SCube^*_\to ⊆ \setofst {(\oimp_i,\oimp_j)} {i,j∈\{0,\ldots,7\}, \; v_\odot(\oimp_i) ≤ v_\odot(\oimp_j)} \\ \end{array} $$ Some valuations that turn these `$⊆$'s into `$=$'. Let % %L mp = mpnew({def="orCube", scale="11pt"}, "12321L"):addcuts("c 21/0 0|12") %L mp:put(v"10", "P"):put(v"20", "P*", "P^*") %L mp:put(v"01", "Q"):put(v"02", "Q*", "Q^*") %L mp:output() % %L mp = mpnew({def="andCube", scale="11pt"}, "12321"):addcuts("c 2/10 01|2") %L mp:put(v"20", "P"):put(v"21", "P*", "P^*") %L mp:put(v"02", "Q"):put(v"12", "Q*", "Q^*") %L mp:output() % %L mp = mpnew({def="impCube", scale="11pt"}, "12R1L"):addcuts("c 2/10 01|2") %L mp:put(v"10", "P") -- :put(v"20", "P*", "P^*") %L mp:put(v"01", "Q") -- :put(v"02", "Q*", "Q^*") %L mp:output() % \pu % $$\begin{array}{c} (H_∧, J_∧, v_∧) = \andCube \qquad (H_∨, J_∨, v_∨) = \orCube \\ (H_→, J_→, v_→) = \impCube \\ \end{array} $$ % then % $$\begin{array}{c} \SCube^*_\land = \setofst {(\oand_i,\oand_j)} {i,j∈\{0,\ldots,7\}, \; v_∧(\oand_i) ≤ v_∧(\oand_j)} \\ \SCube^*_\lor = \setofst {(\oor_i,\oor_j)} {i,j∈\{0,\ldots,7\}, \; v_∨(\oor_i) ≤ v_∨(\oor_j)} \\ \SCube^*_\to = \setofst {(\oimp_i,\oimp_j)} {i,j∈\{0,\ldots,7\}, \; v_→(\oimp_i) ≤ v_→(\oimp_j)} \\ \end{array} $$ % or, in more elementary terms: \newpage {\sl A very important fact.} For any $i$ and $j$, % $$\pu \begin{array}{rcl} \oand_i≤\oand_j & \text{ is a theorem iff it is true in } & \andCube \;\; , \\ \\ \oor_i≤\oor_j & \text{ is a theorem iff it is true in } & \orCube \;\; , \\ \\ \oimp_i≤\oimp_j & \text{ is a theorem iff it is true in } & \impCube \;\; . \\ \end{array} $$ The very important fact, and the valuations $v_∧$, $v_∨$, $v_→$, give us: \begin{itemize} \item a way to {\sl remember} which sentences of the forms $\oand_i≤\oand_j$, $\oor_i≤\oor_j$, $\oimp_i≤\oimp_j$ are theorems; \item countermodels for all the sentences of these forms not in $\SCube_∧$, $\SCube_∨$, $\SCube_→$. For example, $\oor_7≤\oor_4$ is not in $\SCube_∨$; and $v_∨(\oor_7)≤v_∨(\oor_4)$, which shows that $\oor_7≤\oor_4$ can't be a theorem. \end{itemize} % (find-books "__cats/__cats.el" "bell") % (find-books "__cats/__cats.el" "bell" "163") {\sl An observation.} I arrived at the cubes $\ECube_∧^*$, $\ECube_∨^*$, $\ECube_→^*$ by taking the material in the corollary 5.3 of chapter 5 in \cite{BellLST} and trying to make it fit into less mental space (as discussed in \cite{OchsIDARCT}); after that I wanted to be sure that each arrow that is not in the extended cubes has a countermodel, and I found the countermodels one by one; then I wondered if I could find a single countermodel for all non-theorems in $\ECube_∧^*$ (and the same for $\ECube_∨^*$ and $\ECube_→^*$), and I tried to start with a valuation that distinguished {\sl some} equivalence classes in $\ECube_∧^*$, and change it bit by bit, getting valuations that distinguished more equivalence classes at every step. Eventually I arrived at $v_∧$, $v_∨$ and at $v_→$, and at the --- surprisingly nice --- ``very important fact'' above. % (ph2p 20 "ZHA-vals-good") % (ph2 "ZHA-vals-good") Note that this valuation % %L mp = mpnew({def="orand", scale="11pt"}, "1234321L"):addcuts("c 432/10 01|23") %L mp:put(v"20", "P"):put(v"31", "P*", "P^*") %L mp:put(v"02", "Q"):put(v"13", "Q*", "Q^*") %L mp:output() % $$(H_{∧∨},J_{∧∨},v_{∧∨}) \;\; = \;\; \pu\orand$$ % distinguishes all equivalence classes in $\ECube^*_∧$ and in $\ECube^*_∨$, but not in $\ECube^*_→$... it ``thinks'' that $P→Q$ and $P^*→Q$ are equal. \directlua{tf_pop()} % Local Variables: % coding: utf-8-unix % ee-tla: "jov" % End: