
Planar Heyting Algebras for Children 2: Local
Operators

Eduardo Ochs — UFF, Brazil
http://angg.twu.net/math-b.html

eduardoochs@gmail.com

June 30, 2018

Abstract

A local operator ‘∗’ on a Heyting Algebra H is a function ·∗ : H → H
obeying P ≤ P ∗ = P ∗∗ and (P ∧ Q)∗ = P ∗ ∧ Q∗. They are also called
Lawvere-Tierney topologies, modalities, and J-operators in the literature,
and they are important in Topos Theory because every local operator on
the logic of a topos can be extended to the whole topos in a way that
defines a sheaf. We use the prefix “J-” in the paper: every J-operator on
H induces a J-equivalence and a J-partition on H.

In this paper we use finite, planar HAs — “ZHAs”, in the terminol-
ogy of the preceding paper in this series — to understand visually how
J-operators work. Our first result concerns “slashings” that cut a ZHA
into equivalence classes by diagonal cuts not stopping midway; every J-
partition on a ZHA is a slash-partition, and vice-versa. Our second result
is about how J-operators interact with the connectives — for example,
P ∗ ∧ Q∗ = (P ∧ Q)∗ is always true, but P ∗ ∨ Q∗ = (P ∨ Q)∗ has coun-
termodels. We present three small ZHAs that can be used to remind us
which sentences like these are theorems, and that yield countermodels for
all those that are not theorems. Our third result is a way to visualize the
algebra of J-operators on a ZHA H that yields a simple way to express
every J-operator on H as a finite conjunction of “boolean quotients”. Our
fourth result uses that every ZHA H “is” a topology on a 2-column graph
(P,A); we show that every J-operator on H corresponds to a set of “points
to forget” in P and we show that this can be structured as an adjunc-
tion and as a geometric morphism, yielding an example “for children” for
some theorems that the topos theory books present in a way that is very
abstract.

Contents
1 Slashings 3

1.1 Piccs and slashings . 3
1.2 From slash-partitions back to slashings 5

1

http://angg.twu.net/math-b.html

CONTENTS 2

1.3 Slash-regions have maximal elements 6
1.4 Cuts stopping midway . 7
1.5 Slash-operators . 8
1.6 Slash-operators: a property . 9

2 J-operators 10
2.1 J-operators and J-regions . 10
2.2 The are no Y-cuts and no λ-cuts 13
2.3 How J-operators interact with connectives: the obvious cubes . . 13
2.4 How J-operators interact with connectives: the full cubes 15
2.5 How J-operators interact with connectives: ZHA∗-valuations . . . 17
2.6 Good valuations . 19

3 Visualizing the algebra of J-operators 20
3.1 Polynomial J-operators . 20
3.2 An algebra of piccs . 23
3.3 An algebra of J-operators . 24
3.4 All slash-operators are polynomial 26

4 Question marks 27
4.1 Q-equivalences and slashings . 29
4.2 An algebra of question marks . 30
4.3 Open sets of certain form . 30
4.4 Reconstructions are adjoint to erasings 31
4.5 A partial order on the non-erased points 33

5 Sheaves for children 34
5.1 Another example . 37

Introduction
A local operator ‘∗’ on a Heyting Algebra H is a function ·∗ : H → H obeying
P ≤ P ∗ = P ∗∗ and (P ∧ Q)∗ = P ∗ ∧ Q∗. They are also called Lawvere-
Tierney topologies, modalities, and J-operators in the literature, and they are
important in Topos Theory because every local operator on the logic of a topos
can be extended to a closure operator on all objects, and we can use that to
define a sheaf on that topos.

In this paper we use finite, planar HAs — “ZHAs”, in the terminology of the
preceding paper in this series — to understand visually how local operators, or
“J-operators”, work.

Our first result relates J-operators to “slashings” that cut a ZHA into equiv-
alence classes by diagonal cuts not stopping midway: the boundaries between
the equivalence classes of a J-operator are slashings, and every slashing induces
a J-equivalence and a J-operator.

Our second result is about how J-operators interact with the connectives —
for example, P ∗ ∧ Q∗ = (P ∧ Q)∗ is always true, but P ∗ ∨ Q∗ = (P ∨ Q)∗ has

2017planar-has-2 June 30, 2018 13:04

CONTENTS 3

countermodels. We present three small ZHAs that can be used to remind us
which sentences like these are theorems, and that yield countermodels for those
that are not theorems.

Our third result is simply a way to visualize the algebra of J-operators that
lets us understand visually how some J-operators — especially the “closed quo-
tients” and the “open quotients” — interact with one another. We use it to
show that all J-operators on a ZHA are “polynomial” and can be expressed as
finite conjunction of “boolean quotients”; the double negation is a particular
case of boolean quotients.

Our fourth result uses that every ZHA H “is” the order topology on a
2-column graph (P,A); we show that every J-operator corresponds to forgetting
the information on a subset Q of points of P and then reconstructing it in a
maximal way. We use that to connect the previous ideas to standard ways of
presenting toposes and sheaves: a J-operator can be seen as coming from an
adjunction, and that adjunction can be generalized to a geometric morphism
that yields a sheaf — we get a “miniature case” of geometric morphisms and
sheaves, in which everything is easy to draw explicitly and to calculate with.

A note on “children”. “Children” here means “people without mathematical
maturity”, in the sense that, for example, they prefer to start from concrete
examples and only then understand the general theorems.

Many years ago I tried to learn Topos Theory starting by Peter Johnstone’s
first book on the subject. It was too abstract for me, and I said to my friends “I
need a version for children of this!!!”... with time this half-joke became serious —
I made up a definition for “children” that was good enough to characterize what
would be a version “for children” of a text on Category Theory, and a handful
of techniques for building the diagrams and examples that were “missing” in the
original text so that we would have a presentation “for adults” and one for “for
children” of the material, and they could be followed in parallel. In this paper
we will only use explicitly three of these techniques, and quite briefly, to present
a geometric morphism in sec.5 — a thorough discussion of the techniques will
be left to the next paper on this series.

1 Slashings
A slashing of a ZHA H is a way to divide H into regions by diagonal cuts that
“do not stop midway”. In this section we will define formally cuts, slashings,
slash-equivalence, slash-partitions, and slash-operators.

1.1 Piccs and slashings
A picc (“partition into contiguous classes”) of an interval I = {0, . . . , n} is a
partition P of I that obeys this condition (“picc-ness”):

∀a, b, c ∈ {0, . . . , n}. (a < b < c & a ∼P c)→ (a ∼P b ∼P c).

2017planar-has-2 June 30, 2018 13:04

CONTENTS 4

So P = {{0}, {1, 2, 3}, {4, 5}} is a picc of {0, . . . , 5}, and P ′ = {{0}, {1, 2, 4, 5}, {3}}
is a partition of {0, . . . , 5} that is not a picc.

A short notation for piccs is this:

0|123|45 ≡ {{0}, {1, 2, 3}, {4, 5}}

we list all digits in the “interval” in order, and we put bars to indicate where
we change from one equivalence class to another.

Let’s define a notation for “intervals” in LR,

[ab, ef] := [〈a, b〉, 〈e, f〉] := { 〈c, d〉 ∈ LR | a ≤ c ≤ e & b ≤ d ≤ f },

Note that it can be adapted to define “intervals” in a ZHAs H:

[ab, ef] ∩H := { 〈c, d〉 ∈ LR | a ≤ c ≤ e & b ≤ d ≤ f } ∩H
= { 〈c, d〉 ∈ H | a ≤ c ≤ e & b ≤ d ≤ f }.

A slashing S on a ZHA H with top element ab is a pair of piccs, S = (L,R),
where L is a picc on {0, . . . , a} and R is a picc on {0, . . . , b}; for example,
S = (4321/0, 0123\45\6) is a slashing on [00, 46]. We write the bars in L as ‘/’s
and the bars in R as ‘\’ as a reminder that they are to be interpreted as northeast
and northwest “cuts” respectively; S = (4321/0, 0123\45\6) is interpreted as
the diagram at the left below, and it “slashes” [00, 46] and the ZHA at the right
below as:

0
1

2
3

4

0
1
2
3
4
5
6

40
41
42
43

44
45
46

30
31
32

33
34
35

36

20
21

22
23
24

25
26

10
11
12
13

14
15
16

00
01
02

03
04
05

06

45
46

34
35
36

22
23

24
25

26

11
12

13
14

00
01

02
03

04

A slashing S = (L,R) on a ZHA H with top element ab induces an equiv-
alence relation ‘∼S ’ on H that works like this: 〈c, d〉 ∼S 〈e, f〉 iff c ∼L e and
d ∼R f . We write

[c]L := { e ∈ {0, . . . , a} | c ∼L a }
[d]R := { f ∈ {0, . . . , b} | d ∼L f }
[cd]S := { ef ∈ H | cd ∼S ef }

for the equivalence classes, and note that

if [c]L = {c′, . . . , c′′}
and [d]L = {d′, . . . , d′′}
then [cd]S = [c′d′, c′′d′′] ∩H;

2017planar-has-2 June 30, 2018 13:04

CONTENTS 5

for example, in the ZHA at the right at the example above we have:

[1]L = {1, 2, 3, 4},
[2]R = {0, 1, 2, 3},
[12]S = [10, 43] ∩H = {11, 12, 13, 22, 23}.

We say that a slashing S on a ZHA H partitions H into slash-regions; later
(sec.2.1) we will see that a J-operator J also partitions H, and we will refer to
its equivalence classes as J-regions.

Slash-regions are intervals, but note that neither 10 or 43 belong to the
slash-region [12]S = [10, 43] ∩H above.

A slash-partition is a partition on a ZHA induced by a slashing, and a slash-
equivalence is an equivalence relation on a ZHA induced by a slashing. Formally,
a slash-partition on H is a set of subsets of H, and a slash-equivalence is subset
of H×H, but it is so easy to convert between partitions and equivalence relations
that we will often use both terms interchangeably. Our visual representation
for slash-partitions and slash-equivalences on a ZHA H will be the same: H
slashed by diagonal cuts.

1.2 From slash-partitions back to slashings
We saw how to go from a slashing S = (L,R) on H to an equivalence relation
∼S on H; let’s see now how to recover L and R from ∼S .

Let LWH be the left wall of H, and RWH the right wall of H. For example,

H =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

LWH = {00, 01, 11, 12, 22, 23, 24, 34, 35, 45, 46}
RWH = {00, 01, 02, 03, 04, 14, 24, 25, 26, 36, 46}

To recover the picc L — which is a picc on {0, 1, 2, 3, 4} — we need to find
where we change from an L-equivalence class to another when we go from one
digit to the next; and to recover the picc R — which is a picc on {0, 1, 2, 3, 4, 5, 6}
— we need to find where we change from an R-equivalence class to another when
we go from one digit to the next.

We can recover L and R by walking LWH (or RWH) from bottom to top
in a series of white pawns moves, and checking when we change from one
S-equivalence class to another. Northwest moves give information about L,
and northeast moves give information about R. Look at the example below, in

2017planar-has-2 June 30, 2018 13:04

CONTENTS 6

which we walk on RWH :

H =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

LWH =

45
46

34
35

22
23
24

11
12

00
01

RWH =

46
36

24
25
26

14

00
01

02
03
04

26
↗

25
: 25 6∼S26 ⇒ 56∼R6 ⇒ 5\6

25
↗

24
: 24∼S25 ⇒ 4∼R5 ⇒ 45

46
↖

36
: 36∼S46 ⇒ 3∼L4 ⇒ 43

04
↗

03
: 03 6∼S04 ⇒ 36∼R4 ⇒ 3\4

36
↖

26
: 26∼S36 ⇒ 2∼L3 ⇒ 32

03
↗

02
: 02∼S03 ⇒ 2∼R3 ⇒ 23

24
↖

14
: 14∼S24 ⇒ 1∼L2 ⇒ 21

02
↗

01
: 01∼S02 ⇒ 1∼R2 ⇒ 12

14
↖

04
: 04 6∼S14 ⇒ 0 6∼L1 ⇒ 1/0

01
↗

00
: 00∼S01 ⇒ 0∼R1 ⇒ 01

(L,R) = (4321/0, 0123\45\6)

1.3 Slash-regions have maximal elements
...here is how our argument will work, in a particular case:

[1]L = {1, 2, 3, 4},
[2]R = {0, 1, 2, 3},

I = [10, 43],
[12]S = I ∩H = {11, 12, 13, 22, 23}.

(((11 ∨ 12︸ ︷︷ ︸
=12∈I

) ∨ 13

︸ ︷︷ ︸
=13∈I

) ∨ 22

︸ ︷︷ ︸
=23∈I

) ∨ 23

︸ ︷︷ ︸
=23∈I

(((11 ∨ 12︸ ︷︷ ︸
=12∈H

) ∨ 13

︸ ︷︷ ︸
=13∈H

) ∨ 22

︸ ︷︷ ︸
=23∈H

) ∨ 23

︸ ︷︷ ︸
=23∈H∨

[12]S =
∨
{11, 12, 13, 22, 23} = 11 ∨ 12 ∨ 13 ∨ 22 ∨ 23 ∈ I ∩H

11 ≤
∨

[12]S , 12 ≤
∨

[12]S , . . . , 23 ≤
∨

[12]S

We have [12]S = I ∩H, and
∨
[12]S belongs to I ∩H and is greter-or-equal

than all elements of I ∩H, so
∨
[12]S is the maximal element of [12]S .

2017planar-has-2 June 30, 2018 13:04

CONTENTS 7

Here is how we can do that in the general case. Let S = (L,R) be a slashing
on a ZHA H. Let P be a point of H. The equivalence class [P]S is a finite set
{P1, . . . , Pn}, and we know that [P]S = H ∩ I for some interval I. Look at the
elements P1, P1∨P2, (P1∨P2)∨P3, . . ., ((P1∨P2)∨. . .)∨Pn We can see that all of
them belong to both H and I, so we conclude that

∨
[P]S = ((P1∨P2)∨. . .)∨Pn

belongs to H∩I, and it is easy to see that it is greater-or-equal that all elements
in H ∩ I, so it is the maximal element of H ∩ I.

A similar argument shows that
∧
[P]S = ((P1∧P2)∧ . . .)∧Pn is the smallest

element of [P]S .

The same argument shows that if C is any non-empty set of the form I ∩H,
where I is an interval, then

∨
C ∈ C,

∧
C ∈ C, [

∧
C,
∨
C] ∩H = C.

Remember that an interval in a ZHA H is any set of the form [P,Q] ∩ H.
Let’s introduce a new definition: a closed interval in a ZHA H is a non-empty
set C ⊂ H, with

∨
C ∈ C,

∧
C ∈ C, [

∧
C,
∨

C] ∩H = C; informally, a closed
interval in a ZHA has a lowest and highest element, and it “is” everything
between them.

1.4 Cuts stopping midway
We saw in the last section that every slash-region is a closed interval. A partition
into closed intervals of a ZHA H is, as its name says, a partition of H whose
equivalence classes are all closed intervals in H.

Some partitions into closed intervals of a ZHA are not slashings — for ex-
ample, take the partition P with these equivalence classes:

50
51
52
53

40
41
42

43

30
31

32
33

20
21
22
23

10
11
12
13

00
01
02

03

Here is an easy way to prove formally that the partition above does not
come from a slashing S = (L,R). We will adapt the idea from sec.1.2, where
we recovered L and R from northwest and northeast steps.

21 ∼P 31︸ ︷︷ ︸
false

↔ 2 ∼L 3︸ ︷︷ ︸
=(

↔ 22 ∼P 32︸ ︷︷ ︸
true

31 ∼P 41︸ ︷︷ ︸
true

↔ 3 ∼L 4︸ ︷︷ ︸
=(

↔ 32 ∼P 42︸ ︷︷ ︸
false

The problem is that the figure above has “cuts stopping midway”... if its
cuts all crossed the ZHA all the way through, we would have this for L and

2017planar-has-2 June 30, 2018 13:04

CONTENTS 8

northeast cuts,

0 ∼L 1 ↔ 00 ∼P 10 ↔ 01 ∼P 11 ↔ 02 ∼P 12 ↔ 03 ∼P 13
1 ∼L 2 ↔ 10 ∼P 20 ↔ 11 ∼P 21 ↔ 12 ∼P 22 ↔ 13 ∼P 23
2 ∼L 3 ↔ 20 ∼P 30 ↔ 21 ∼P 31 ↔ 22 ∼P 32 ↔ 23 ∼P 33
3 ∼L 4 ↔ 30 ∼P 40 ↔ 31 ∼P 41 ↔ 32 ∼P 42 ↔ 33 ∼P 43
4 ∼L 5 ↔ 40 ∼P 50 ↔ 41 ∼P 51 ↔ 42 ∼P 52 ↔ 43 ∼P 53
5 ∼L 6 ↔ 50 ∼P 60 ↔ 51 ∼P 61 ↔ 52 ∼P 62 ↔ 53 ∼P 63

and something similar for R and northwest cuts.

Formally, a partition P on H has an “L-cut between c and c+ stopping
midway” if cd ∼P c+d 6↔ cd ∼P c+d for some d, and it has an “R-cut between
d and d+ stopping midway” if cd ∼P cd+ 6↔ c+d ∼P c+d+ for some c; here we
are writing x+ for x+ 1.

Theorem: a partition of H into closed intervals is a slash-partition if and
only if it doesn’t have any cuts stopping midway. Proof: use the ideas above
to recover L and R from ∼P , and then check that S = (L,R) induces an
equivalence relation ∼S that coincides with ∼P .

1.5 Slash-operators
We can define operations that take each each P ∈ H to the maximal and to the
minimal element of its S-equivalent class, now that we know that these maximal
and minimal elements exist:

PS :=
∨
[P]S (maximal element),

P coS :=
∧
[P]S (minimal element).

Note that [P]S = [P coS , PS] ∩H.
We will use the operation ·S a lot and ·coS very little. The ‘co’ in ‘coS’

means that ·coS is dual to ·S , in a sense that will be made precise later.

A slash-operator on a ZHA H is a function ·S : H → H induced by a slashing
S = (L,R) on H. It is easy to see that P ≤ PS (“ ·S is non-decreasing”) and
that PS = (PS)S (“ ·S is idempotent”).

Any idempotent function ·F : H → H induces an equivalence relation on
H: P ∼F Q iff PF = QF . We can use that to test if a given ·F : H → H is a
slash-operator: ·F is a slash-operator iff it obeys all this:

1) ·F is idempotent,
2) ·F is non-decreasing,
3) ∼F partitions H into closed intervals,
4) ∼F doesn’t have cuts stopping midway.

2017planar-has-2 June 30, 2018 13:04

CONTENTS 9

1.6 Slash-operators: a property
Slash-operators obey a certain property that will be very important later. Let’s
state that property in five equivalent ways:

1) If cd ∼S c′d′ and ef ∼S e′f ′ then cd ∧ ef ∼S c′d′ ∧ e′f ′.
2) If P ∼S P ′ and Q ∼S Q′ then P ∧Q ∼S P ′ ∧Q′.
3) If P ∼S P ′ and Q ∼S Q′ then (P ∧Q)S = (P ′ ∧Q′)S .
4) If P ∼S P ′ and Q ∼S Q′ then

(P ∧Q)S = (PS ∧QS)S (a)
= ((P ′)S ∧ (Q′)S)S (b)
= (P ′ ∧Q′)S (c)

5) (P ∧Q)S = (PS ∧QS)S .

Here’s a proof of 1↔ 2↔ 3↔ 4↔ 5.
1↔ 2: we just changed notation,
2↔ 3: because A ∼S B iff AS = BS ,
3→ 5: make the substitution

[
P ′:=PS

Q′:=QS

]
in 3,

5 → 4: 4a is just a copy of 5, and 4c is a copy of 5 with
[
P :=P ′

Q:=Q′

]
. For 4b,

note that P ∼P P ′ implies PS = (P ′)S and Q ∼P Q′ implies QS = (Q′)S ,
4→ 3: 4 is an equality between more expressions than 3,

...and here is a way to visualize what is going on:

30

31

32

33

20

21

22

23

10

11

12

13

00
01

02

03 P

P ′
PS

Q

Q′
QS

(P︸︷︷︸
30

∧ Q︸︷︷︸
03︸ ︷︷ ︸

00

)S

︸ ︷︷ ︸
22

= (P︸︷︷︸
30

S

︸ ︷︷ ︸
32

∧ Q︸︷︷︸
03

S

︸ ︷︷ ︸
23︸ ︷︷ ︸

22

)S

︸ ︷︷ ︸
22

= (P ′︸︷︷︸
31

S

︸ ︷︷ ︸
32

∧ Q′︸︷︷︸
13

S

︸ ︷︷ ︸
23︸ ︷︷ ︸

22

)S

︸ ︷︷ ︸
22

= (P ′︸︷︷︸
31

∧ Q′︸︷︷︸
13︸ ︷︷ ︸

11

)S

︸ ︷︷ ︸
22

Note that all subexpressions belong to three S-regions: a region with P , P ′,
PS = P ′S , another with Q, Q′, QS = Q′S , and one with all the ‘∧’s. If we had
cuts stopping midway then some of the ‘∧’s could be in different regions.

2017planar-has-2 June 30, 2018 13:04

CONTENTS 10

I think that the clearest way to show (1) is by putting its proof in tree form:

cd ∼S c′d′

c ∼L c′
ef ∼S e′f ′

e ∼L e′

min(c, e) ∼L min(c′, e′)

cd ∼S c′d′

d ∼R d′
ef ∼S e′f ′

f ∼R f ′

min(d, f) ∼L min(d′, f ′)

min(c, e)min(d, f) ∼S min(c′, e′)min(d′, f ′)

cd ∧ ef ∼S c′d′ ∧ e′f ′

2 J-operators
A J-operator on a Heyting Algebra H = (Ω,≤,>,⊥,∧,∨,→,↔,¬) is a function
J : Ω → Ω that obeys the axioms J1, J2, J3 below; we usually write J as
·∗ : Ω→ Ω, and write the axioms as rules.

P ≤ P ∗ J1
P ∗ = P ∗∗ J2

(P&Q)∗ = P ∗&Q∗ J3

J1 says that the operation ·∗ is non-decreasing.
J2 says that the operation ·∗ is idempotent.
J3 is a bit mysterious but will have interesting consequences.
In secs.1.5 and 1.6 we saw that slash-operators are J-operators, and in sec.2.2

we will see that all J-operators on ZHAs are slash-operators — but the idea of
a J-operator makes sense on all Heyting Algebras, not only ZHAs.

J-operators are called local operators in [Joh02] (section A4.4), modalities
in [Bel88] (chapter 5), Lawvere-Tierney topologies or just topologies in [MM92]
(V.1) and [Joh77] (3.1). We will refer to them as J-operators following [FS79]
(p.324) because “J-” works well as a prefix.

2.1 J-operators and J-regions
A J-operator induces an equivalence relation and equivalence classes on Ω, like
slashings do:

P ∼J Q iff P ∗ = Q∗

[P]J := {Q ∈ Ω | P ∗ = Q∗ }
The axioms J1, J2, J3 have many consequences. The first ones are listed in

Figure 1 as derived rules, whose names mean:
Mop (monotonicity for products): a lemma used to prove Mo,
Mo (monotonicity): P ≤ Q implies P ∗ ≤ Q∗,
Sand (sandwiching): all truth values between P and P ∗ are equivalent,
EC&: equivalence classes are closed by ‘&’,
EC∨: equivalence classes are closed by ‘∨’,
ECS: equivalence classes are closed by sandwiching,

Take a J-equivalence class, [P]J , and list its elements: [P]J = {P1, . . . , Pn}.
Let P∧ := ((P1 ∧ P2) ∧ . . .) ∧ Pn and Let P∨ := ((P1 ∨ P2) ∨ . . .) ∨ Pn. It turns
out that [P]J = [P∧, P∨] ∩ Ω; let’s prove that by doing ‘⊆’ first, then ‘⊇’.

2017planar-has-2 June 30, 2018 13:04

CONTENTS 11

(P&Q)∗ ≤ Q∗ Mop
:=

(P&Q)∗ = P ∗&Q∗ J3
P ∗&Q∗ ≤ Q∗

(P&Q)∗ ≤ Q∗

P ≤ Q

P ∗ ≤ Q∗ Mo
:=

P ≤ Q

P = P&Q

P ∗ = (P&Q)∗ (P&Q)∗ ≤ Q∗ Mop

P ∗ ≤ Q∗

P ≤ Q ≤ P ∗

P ∗ = Q∗ Sand
:=

P ≤ Q

P ∗ ≤ Q∗ Mo

Q ≤ P ∗

Q∗ ≤ P ∗∗ Mo
P ∗∗ = P ∗ J2

Q∗ ≤ P ∗

P ∗ = Q∗

P ∗ = Q∗

P ∗ = Q∗ = (P&Q)∗
EC&

:=

P ∗ = Q∗

P ∗ = Q∗ = P ∗&Q∗ P ∗&Q∗ = (P&Q)∗
J3

P ∗ = Q∗ = (P&Q)∗

P ∗ = Q∗

P ∗ = Q∗ = (P ∨Q)∗
EC∨

:=

P ∗ = Q∗

P ≤ P ∨Q

P ≤ P ∗ J1
Q ≤ Q∗ J1

P ∗ = Q∗

Q∗ = P ∗

Q ≤ P ∗

P ∨Q ≤ P ∗

P ≤ P ∨Q ≤ P ∗

P ∗ = (P ∨Q)∗
Sand

P ∗ = Q∗ = (P ∨Q)∗

P ≤ Q ≤ R P ∗ = R∗

P ∗ = Q∗ = R∗ ECS
:=

P ≤ Q ≤ R R ≤ R∗ J1
P ∗ = R∗

R∗ = P ∗

P ≤ Q ≤ P ∗

P ∗ = Q∗ Sand
P ∗ = R∗

P ∗ = Q∗ = R∗

Figure 1: J-operators: basic derived rules

2017planar-has-2 June 30, 2018 13:04

CONTENTS 12

Using EC& and EC∨ several times we see that

P1 ∧ P2 ∼J P P1 ∨ P2 ∼J P
(P1 ∧ P2) ∧ P3 ∼J P (P1 ∨ P2) ∨ P3 ∼J P

...
...

((P1 ∧ P2) ∧ . . .) ∧ Pn ∼J P ((P1 ∨ P2) ∨ . . .) ∨ Pn ∼J P

so P∧ ∼J P∨ ∼J P , and by the sandwich lemma ([P∧, P∨] ∩ Ω) ⊆ [P]J .
For any Pi ∈ [P]J we have P∧ ≤ Pi ≤ P∨, which means that:

[P]J = {P1, . . . , Pn}
⊆ {Q ∈ Ω | P∧ ≤ Q ≤ P∨ }
= [P∧, P∨] ∩ Ω,

so [P]J ⊆ [P∧, P∨] ∩ Ω.

As the operation ‘·∗’ is increasing and idempotent, each equivalence class
[P]J has exactly one maximal element, which is P ∗; but P∨ is also the maximal
element of [P]J , so P∨ = P ∗, and we can interpret the operation ‘·∗’ as “take
each P to the top element in its equivalence class”, which is similar to how we
defined an(other) operation ‘·∗’ on slashings in the previous section.

The operation “take each P to the bottom element in its equivalence class”
will be useful in a few occasions; we will call it ‘·co∗’ to indicate that it is dual
to ‘·∗’ in some sense. Note that P co∗ = P∧.

Look at the figure below, that shows a partition of a ZHA A = [00, 66] into
five regions, each region being an interval; this partition does not come from a
slashing, as it has cuts that stop midway. Define an operation ‘·∗’ on A, that
works by taking each truth-value P in it to the top element of its region; for
example, 30∗ = 61.

60
61
62

63
64
65

66

50
51

52
53
54

55
56

40
41
42
43

44
45
46

30
31
32

33
34
35
36

20
21

22
23
24
25

26

10
11
12
13
14

15
16

00
01
02
03

04
05
06

It is easy to see that ‘·∗’ obeys J1 and J2; however, it does not obey J3 — we will
prove that in sec.2.2. As we will see, the partitons of a ZHA into intervals that
obey J1, J2, J3 ae exactly the slashings; or, in other words, every J-operator
comes from a slashing.

2017planar-has-2 June 30, 2018 13:04

CONTENTS 13

2.2 The are no Y-cuts and no λ-cuts
We want to see that if a partition of a ZHA H into intervals has “Y-cuts” or
“λ-cuts” like these parts of the last diagram in the last section,

22
21 12

11
⇐ this is a Y-cut

25
24 15

14
⇐ this is a λ-cut

then it operation J that takes each element to the top of its equivalence class
cannot obey J1, J2 and J3 at the same time. We will prove that by deriving rules
that say that if 11 ∼J 12 then 21 ∼J 22, and that if 15 ∼J 25 then 14 ∼J 24;
actually, our rules will say that if 11∗ = 12∗ then (11 ∨ 21)∗ = (12 ∨ 21)∗, and
that if 15∗ = 25∗ then (15 ∧ 24)∗ = (25 ∧ 24)∗. The rules are:

P ∗ = Q∗

(P ∨R)∗ = (Q ∨R)∗
NoYcuts

:=

P ∗ = Q∗

P ∨R∗ = Q ∨R∗

(P ∨R∗)∗ = (Q ∨R∗)∗

(P ∨R)∗ = (Q ∨R)∗
∨∗Cube

P ∗ = Q∗

(P&R)∗ = (Q&R)∗
Noλcuts

:=

P ∗ = Q∗

P ∗&R∗ = Q∗&R∗

(P&R)∗ = (Q&R)∗
J3

The top derivation mentions a rule called ‘∨∗Cube’, which will be defined
and proved in sec.2.4.

2.3 How J-operators interact with connectives: the obvi-
ous cubes

It is easy to prove each one of the arrows below (A //B means A ≤ B):

P&Q

P ∗&QddJJJJJJ

P&Q∗

P ∗&Q∗
ddJJJJJJ

(P&Q)∗

(P ∗&Q)∗
ddJJJJJJ

(P&Q∗)∗

(P ∗&Q∗)∗
ddJJJJJJ

P&Q

P&Q∗
::tttttt

P ∗&Q

P ∗&Q∗
::tttttt

(P&Q)∗

(P&Q∗)∗
::tttttt

(P ∗&Q)∗

(P ∗&Q∗)∗
::tttttt

P&Q

(P&Q)∗
OO

P ∗&Q

(P ∗&Q)∗
OO

P&Q∗

(P&Q∗)∗
OO

P ∗&Q∗

(P ∗&Q∗)∗
OO

P∨Q

P ∗∨QddJJJJJJ

P∨Q∗

P ∗∨Q∗
ddJJJJJJ

(P∨Q)∗

(P ∗∨Q)∗
ddJJJJJJ

(P∨Q∗)∗

(P ∗∨Q∗)∗
ddJJJJJJ

P∨Q

P∨Q∗
::tttttt

P ∗∨Q

P ∗∨Q∗
::tttttt

(P∨Q)∗

(P∨Q∗)∗
::tttttt

(P ∗∨Q)∗

(P ∗∨Q∗)∗
::tttttt

P∨Q

(P∨Q)∗
OO

P ∗∨Q

(P ∗∨Q)∗
OO

P∨Q∗

(P∨Q∗)∗
OO

P ∗∨Q∗

(P ∗∨Q∗)∗
OO

P→Q

P ∗→Q

$$

JJJJJJ

P→Q∗

P ∗→Q∗

$$

JJJJJJ
(P→Q)∗

(P ∗→Q)∗

$$

JJJJJJ

(P→Q∗)∗

(P ∗→Q∗)∗

$$

JJJJJJ

P→Q

P→Q∗
::tttttt

P ∗→Q

P ∗→Q∗
::tttttt

(P→Q)∗

(P→Q∗)∗
::tttttt

(P ∗→Q)∗

(P ∗→Q∗)∗
::tttttt

P→Q

(P→Q)∗
OO

P ∗→Q

(P ∗→Q)∗
OO

P→Q∗

(P→Q∗)∗
OO

P ∗→Q∗

(P ∗→Q∗)∗
OO

The cubes above will be called the “obvious and-cube”, the “obvious or-
cube”, and the “obvious implication-cube”, and they show partial orders be-
tween expressions of the form (P ? � Q?)?, where the ‘�’ stands for one of the

2017planar-has-2 June 30, 2018 13:04

CONTENTS 14

connectives ‘∧’, ‘∨’ or ‘→’, and each ‘?’ marks a place where we can put either
a ‘∗’ or nothing; let’s be more precise.

The “cube of ∧-expressions”, ECube∧, is the set of eight expressions of the
form (P ? ∧Q?)?; ECube∨ is the set of eight expressions of the form (P ? ∨Q?)?,
and ECube→ the set of eight expressions of the form (P ? → Q?)?.

The “obvious ∧-cube”, OCube∧, is the directed graph shown above, with 12
arrows between elements of ECube∧. Its transitive closure, OCube∗∧, is a partial
order on ECube∧. We define OCube∨, OCube∗∨, OCube→, and OCube∗→ similarly.

If we establish that the three ‘?’s in (P ? � Q?)? are “worth” 1, 2 and 4
respectively, we get a way to number the elements in ECube∧ from 0 to 7. We
define (∧)0, . . . , (∧)7 as:

(∧)0 = P ∧Q, (∧)4 = (P ∧Q)∗,
(∧)1 = P ∗ ∧Q, (∧)1+4 = (P ∗ ∧Q)∗,
(∧)2 = P ∧Q∗, (∧)2+4 = (P ∧Q∗)∗,

(∧)1+2 = P ∗ ∧Q∗, (∧)1+2+4 = (P ∗ ∧Q∗)∗,

and we do the same for (∨)0, . . . , (∨)7, (→)0, . . . , (→)7. We always draw the
‘(�)i’s in this position:

(�)7
(�)5 (�)3 (�)6
(�)1 (�)4 (�)2

(�)0

7

5 3 6

1 4 2

0

With this numbering we can reinterpret the cubes as subsets of {0, . . . , 7}2;
{0, . . . , 7}2 is a ZSet, and so we can use the positional notation and interpret
each cube as a grid of ‘0’s and ‘1’s. For example,

7

5

;;

ww
ww
w 7

3

OO7

6

cc
GG

GG
G

5

1

OO5

4

cc
GG

GG
G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4

;;

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

=

(0, 1), (2, 3), (4, 5), (6, 7),
(0, 2), (1, 3), (4, 6), (5, 7),
(0, 4), (1, 5), (2, 6), (3, 7)

 =

0 0 0 1 0 1 1 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The transitive-reflexive closure of a cube yields a different grid:

7

5

;;

ww
ww
w 7

3

OO7

6

cc
GG

GG
G

5

1

OO5

4

cc
GG

GG
G 3

1

;;

ww
ww
w 3

2

cc
GG

GG
G 6

4

;;

ww
ww
w 6

2

OO

1

0

cc
GG

GG
G 4

0

OO 2

0

;;

ww
ww
w

∗

=

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 0 0 0 1 1 0 0
1 1 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

2017planar-has-2 June 30, 2018 13:04

CONTENTS 15

Note that the grids for OCube∧ and OCube∨ are equal, but the grid for
OCube→ is different. Also, note that OCube∧, OCube∗∧, etc, are directed graphs;
sometimes we will need to regard them as pairs, and we will use a lowercase
notation for their sets of arrows: OCube∧ = (ECube∧, ocube∧), OCube∗→ =
(ECube→, ocube∗→), etc.

2.4 How J-operators interact with connectives: the full
cubes

We can prove these new derived rules,

(P ∗&Q∗)∗ = P ∗&Q∗ = (P&Q)∗
&∗C0

:=

P ∗∗ = P ∗ J2
Q∗∗ = Q∗ J2

(P ∗&Q∗)∗ = P ∗∗&Q∗∗ = P ∗&Q∗ = (P&Q)∗
J3

(P ∗&Q∗)∗ = P ∗&Q∗ = (P&Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
∨∗C0

:=

P ≤ P ∨Q

P ∗ ≤ (P ∨Q)∗
Mo

Q ≤ P ∨Q

Q∗ ≤ (P ∨Q)∗
Mo

P ∗ ∨Q∗ ≤ (P ∨Q)∗

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗∗
Mo

(P ∗ ∨Q∗)∗ ≤ (P ∨Q)∗
J2

(P → Q∗)∗ ≤ P ∗ → Q∗ →∗C0
:=

P → Q∗ ≤ P → Q∗

(P → Q∗)&P ≤ Q∗

((P → Q∗)&P)∗ ≤ Q∗∗ Mo

((P → Q∗)&P)∗ ≤ Q∗ J2

(P → Q∗)∗&P ∗ ≤ Q∗ J3

(P → Q∗)∗ ≤ P ∗ → Q∗

and interpret them as extra arrows on the cubes. The “full ∧-cube”, FCube∧, is
OCube∧ plus these arrows:

(P ∗ ∧Q∗)∗
oo // P ∗ ∧Q∗ oo // (P ∧Q)∗

The “full ∨-cube”, FCube∨, is OCube∨ plus this,

(P ∗ ∨Q∗)∗ // (P ∨Q)∗

and the “full →-cube”, FCube→, is OCube→ plus this,

(P → Q∗)∗ // (P ∗ → Q∗)

We are interested in the transitive-reflexive closures of these full cubes.
FCube∗∧ yields a non-strict partial order on ECube∧ that identifies five of its
elements, and FCube∗∨ and FCube∗→ yield non-strict partial orders that identify
four elements each. My favorite way to represent these non-strict partial orders
is by the diagrams at the right below, that show very clearly which elements
are identified:

2017planar-has-2 June 30, 2018 13:04

CONTENTS 16

(∧)0

(∧)1 ddJJJJJJ
(∧)2

(∧)3 ddJJJJJJ
(∧)4

(∧)5 ddJJJJJJ
(∧)6

(∧)7 ddJJJJJJ

(∧)0

(∧)2::tttttt

(∧)1

(∧)3::tttttt
(∧)4

(∧)6::tttttt

(∧)5

(∧)7::tttttt

(∧)0

(∧)4OO(∧)1

(∧)5OO

(∧)2

(∧)6OO(∧)3

(∧)7OO

(∧)3

(∧)7

��
(∧)3

(∧)4
��

(∧)3

(∧)4

OO

∗

=

(∧)0

(∧)1 ddJJJJJJ
(∧)2

(∧)3 ddJJJJJJ
(∧)4

(∧)5 JJJJJJ
JJJJJJ

(∧)6

(∧)7 JJJJJJ
JJJJJJ

(∧)0

(∧)2::tttttt

(∧)1

(∧)3::tttttt
(∧)4

(∧)6
tttttt
tttttt

(∧)5

(∧)7
tttttt
tttttt

(∧)0

(∧)4OO(∧)1

(∧)5OO

(∧)2

(∧)6OO(∧)3

(∧)7

∗

(∨)0

(∨)1 ggOOOOOOOO

(∨)2

(∨)3 ggOOOOOOOO
(∨)4

(∨)5 ggOOOOOOOO

(∨)6

(∨)7 ggOOOOOOOO

(∨)0

(∨)277oooooooo

(∨)1

(∨)377oooooooo
(∨)4

(∨)677oooooooo

(∨)5

(∨)777oooooooo

(∨)0

(∨)4OO(∨)1

(∨)5OO

(∨)2

(∨)6OO(∨)3

(∨)7OO(∨)7

(∨)4
��

∗

=

(∨)0

(∨)1 ddJJJJJJ
(∨)2

(∨)3 ddJJJJJJ
(∨)4

(∨)5 JJJJJJ
JJJJJJ

(∨)6

(∨)7 JJJJJJ
JJJJJJ

(∨)0

(∨)2::tttttt

(∨)1

(∨)3::tttttt
(∨)4

(∨)6
tttttt
tttttt

(∨)5

(∨)7
tttttt
tttttt

(∨)0

(∨)4OO(∨)1

(∨)5OO

(∨)2

(∨)6OO(∨)3

(∨)7OO

∗

(→)0

(→)1

$$

JJJJJJ

(→)2

(→)3

$$

JJJJJJ

(→)4

(→)5

$$

JJJJJJ

(→)6

(→)7

$$

JJJJJJ

(→)0

(→)2::tttttt

(→)1

(→)3::tttttt
(→)4

(→)6::tttttt

(→)5

(→)7::tttttt

(→)0

(→)4OO
(→)1

(→)5OO

(→)2

(→)6OO
(→)3

(→)7OO

(→)6(→)3 oo

∗

=

(→)0

(→)1

$$

JJJJJJ

(→)2

(→)3JJJJJJ
JJJJJJ

(→)4

(→)5

$$

JJJJJJ

(→)6

(→)7JJJJJJ
JJJJJJ

(→)0

(→)2::tttttt

(→)1

(→)3::tttttt
(→)4

(→)6::tttttt

(→)5

(→)7::tttttt

(→)0

(→)4OO
(→)1

(→)5OO

(→)2

(→)6(→)3

(→)7

∗

When the arrow (∧)i // (∧)j belongs to FCube∗∧ we say that (∧)i ≤ (∧)j
is true “by the full and-cube”. We write this as a derived rule as

(∧)i ≤ (∧)j
&∗Cubeij or just as: (∧)i ≤ (∧)j

&∗Cube
,

and when the arrows (∧)i //oo (∧)j belongs to FCube∗∧ we say that (∧)i = (∧)j
is true “by the full and-cube”, and we write that as:

(∧)i = (∧)j
&∗Cubeij or just as: (∧)i = (∧)j

&∗Cube
,

and we do the same for ‘∨’ and ‘→’.
The double-bar rule in sec.2.2 is a contraction of:

(P ∨Q∗)∗ = (P ∨R∗)∗ (P ∨R∗)∗ = (P ∨R)∗
∨∗Cube64

(P ∨Q)∗ = (P ∨R)∗

2017planar-has-2 June 30, 2018 13:04

CONTENTS 17

2.5 How J-operators interact with connectives: ZHA∗-valuations
Let’s write Exprs(V) for the set of well-formed expressions built from a set of
variables V, constants > and ⊥, and operations ∧, ∨, →, ↔, ¬, ·∗; each one of
the sets ECube∧, ECube∨ and ECube→ of the last sections is an 8-element subset
of Exprs({P,Q}).

If E ⊆ Exprs(V), a ZHA∗-valuation for E, or an E-valuation, is a triple
(H, J, v), where H is a ZHA, J is a J-operator on H, and v : V → H is a
function that assigns a truth-value in H to each variable in V. There is a natu-
ral way to extend v to a function v′ : Exprs(V) → H, and we can restrict v′ to
a function v′′ : E→ H.

We can draw all components of an ECube∨-valuation (H, J, v) together by
writing ‘P ’ and ‘Q’ on the positions v(P) and v(Q) on (H, J), as we did in
sec.1.6. We will often also write ‘P ∗’ and ‘Q∗’ on the positions v′(P ∗) and
v′(Q∗) for clarity. For example:

P
P ∗

Q
Q∗

v′(P ∨Q) = 11 = v′′((∨)0)
v′(P ∗ ∨Q) = 21 = v′′((∨)1)

v(P) = 10 v′(P ∨Q∗) = 12 = v′′((∨)2)
v(Q) = 01 v′(P ∗ ∨Q∗) = 22 = v′′((∨)3)

v′(P ∗) = 20 v′((P ∨Q)∗) = 22 = v′′((∨)4)
v′(Q∗) = 02 v′((P ∗ ∨Q)∗) = 22 = v′′((∨)5)

v′((P ∨Q∗)∗) = 22 = v′′((∨)6)
v′((P ∗ ∨Q∗)∗) = 22 = v′′((∨)7)

Each ECube∨-valuation (H, J, v) induces a non-strict partial order on ECube∨,
in which (∨)i ≤ (∨)j iff v′′((∨)i) ≤ v′′((∨)j). We will write that partial order as

VCube∨(H, J, v) = (ECube∨, vcube∨(H, J, v)) or:
VCube∨(v) = (ECube∨, vcube∨(v))

We will often omit the ‘H’ and the ‘J ’ and write just VCube∨(v).
It is easy to calculate by hand the partial orders VCube∨(v), VCube∧(v) or

VCube→(v) associated to a given valuation (H, J, v): we write in the position
corresponding to each ‘(�)i’ of the cube the value of the corresponding v′′((�)i),
then we draw the arrows — some of them will be ‘=’s —, then transfer the arrows
to the cube with ‘(�)i’s. For example:

11

21 bbEEEEEE

12

22 bbEEEEEE
22

22EEEEEE

EEEEEE

22

22EEEEEE

EEEEEE

11

12<<yyyyyy

21

22<<yyyyyy
22

22
yyyyyy

yyyyyy

22

22
yyyyyy

yyyyyy

11

22OO21

22OO

12

22OO22

22

 VCube∨

 P
P ∗

Q
Q∗

 =

(∨)0

(∨)1 bbEEEEE
(∨)2

(∨)3 bbEEEEE
(∨)4

(∨)5EEEEE
EEEEE

(∨)6

(∨)7EEEEE
EEEEE

(∨)0

(∨)2<<yyyyy

(∨)1

(∨)3<<yyyyy
(∨)4

(∨)6
yyyyy
yyyyy

(∨)5

(∨)7
yyyyy
yyyyy

(∨)0

(∨)4OO(∨)1

(∨)5OO

(∨)2

(∨)6OO(∨)3

(∨)7

∗

2017planar-has-2 June 30, 2018 13:04

CONTENTS 18

A very important fact. For any i and j,

(∨)i ≤ (∨)j is a theorem iff it is true in
P

P ∗

Q
Q∗ ,

(∧)i ≤ (∧)j is a theorem iff it is true in P
P ∗

Q
Q∗

,

(→)i ≤ (→)j is a theorem iff it is true in
P Q

.

We will call the valuations at the right above (H∨, J∨, v∨), (H∧, J∧, v∧), (H→, J→, v→).
In the language of partial orders, the very important fact can be stated as:

FCube∗∨ = VCube∨(v∨),
FCube∗∧ = VCube∧(v∧),
FCube∗→ = VCube→(v→).

Suppose that (H1, J1, v1), (H2, J2, v2), . . . are valuations on — say — ECube→.
This always holds

FCube∗→ ⊆ VCube→(vi),

because all ZHA∗-theorems are true in all valuations. We say that:

vi is good when FCube∗→ = VCube→(vi),
vi and vj are equivalent when VCube→(vi) = VCube→(vj),

vi is better than vj when VCube→(vi) ⊆ VCube→(vj).

Also, a non-theorem is an arrow (→)i ≤ (→)j that is not in FCube∗→; a
countermodel for a non-theorem (→)i ≤ (→)j is a valuation that “falsifies”
(→)i ≤ (→)j , i.e., a valuation in which (→)i ≤ (→)j is not true. Note that a
valuation is “good” when it is a countermodel for all non-theorems at once, and
a valuation v1 is strictly better than v2 when v1 falsifies all non-theorems that
v2 falsifies, plus some.

In sec.18 of [PH1] we saw that ZHAs do not distinguish as many sentences
as arbitrary Heyting Algebras; we saw a sentence SP ∨ SQ ∨ SR that had a

2017planar-has-2 June 30, 2018 13:04

CONTENTS 19

countermodel in a HA, but that ZHAs “think” that its value is always >. To
formalize and extend this idea we need a slight abuse of language. We will say
that an E-valuation (H, J, v) “distinguishes all elements of E”, or “distinguishes
E”, instead of the more precise “is a countermodel for all non-theorems of the
form Ei ≤ Ej at once”; and we will say that v1 “distinguishes more elements
of E” than v2 when v1 is better than v2. A set of expressions E is ZHA∗-good
when there is a valuation that distinguishes all elements of E. So:

{SP ∨ SQ ∨ SR,>} is not ZHA∗-good,
ECube∨ is ZHA∗-good,
ECube∧ is ZHA∗-good,
ECube→ is ZHA∗-good.

ZHAs with J-operators do not distinguish all sets of expressions, but they
distinguish some sets, like ECube∨, ECube∧, ECube→, that are very useful.

Note that this valuation

(H∧∨, J∧∨, v∧∨) =

P

P ∗

Q

Q∗

distinguishes ECube∨∪ECube∧, but it does not distinguish ECube→ — it thinks
that P → Q and P ∗ → Q are equal.

An observation. I arrived at the cubes FCube∗∧, FCube∗∨, FCube∗→ by taking
the material in the corollary 5.3 of chapter 5 in [Bel88] and trying to make it fit
into less mental space (as discussed in [Och13]); after that I wanted to be sure
that each arrow that is not in a full cube has a countermodel, and I found the
countermodels one by one; then I wondered if I could find a single countermodel
for all non-theorems in FCube∗∧ (and the same for FCube∗∨ and FCube∗→), and
I tried to start with a valuation that distinguished some elements in ECube∧,
and change it bit by bit, getting valuations that distinguished more elements at
every step. Eventually I arrived at v∧, v∨ and at v→, and at the — surprisingly
nice — “very important fact”.

2.6 Good valuations
If (∨)i ≤ (∨)j is true in FCube∗∨ then it is a theorem, and it holds in every
ECube∨-valuation (H, J, v) — so FCube∗∨ ⊆ VCube∨(H, J, v). The important
information that a ZHA∗-valuation carries is in its ‘ 6≤’s, as they say that some-
thing cannot be a theorem and that (H, J, v) is a countermodel showing that.
For example, in (H∨, J∨, v∨) we had (∨)7 6≤ (∨)3; if we could prove, using

2017planar-has-2 June 30, 2018 13:04

CONTENTS 20

new derived rules like the ones in sec.2.4, that (∨)7 ≤ (∨)3 is a theorem, then
we would have (∨)7 ≤ (∨)3 in all valuations, which is incompatible with the
(∨)7 6≤ (∨)3 in VCube∨(H∨, J∨, v∨).

Note that this means that: 1) that if a statement of the form (∨)i ≤ (∨)j
is not in FCube∗∨ then it cannot be proved, i.e., all attempts to find a tree-
proof for that (∨)i ≤ (∨)j using the HA rules and J1, J2, J3 are bound to
fail; 2) the theorems of the form (∨)i ≤ (∨)j are exactly the ones that are
true in VCube∨(H∨, J∨, v∨), so we can use (H∨, J∨, v∨) as a reminder for which
sentences of the form (∨)i ≤ (∨)j are theorems — and the same for ‘∧’ and ‘→’.

3 Visualizing the algebra of J-operators
The J-operators on a Heyting Algebra H, J-ops(H), have a natural lattice struc-
ture, in which the bottom element is the identity function and whose top element
is the operator that takes all elements to >. The bottom element of J-ops(H)
is the “quotient” (in the terminology of sec.3.1) with the maximum number
of equivalence classes, the top element is the “quotient” with a single equiva-
lence class. We can refer to them as ⊥,> ∈ J-ops(H), and define operations
∧,∨ : J-ops(H)2 → J-ops(H); this is the algebra of J-operators on H.

Some important J-operators are called “closed quotients”, “open quotients”
and “forcing quotients”. In this section we will see how to visualize the algebra
J-ops(H) when H is a ZHA, and how to visualize these special J-operators and
understand how they interact — including a way to factor arbitrary J-operators
on a ZHA as a conjunction of finitely many basic (“polynomial”) J-operators.

3.1 Polynomial J-operators
It is not hard to check that for any Heyting Algebra H and any Q,R ∈ H the
operations (¬¬), . . ., (∨Q ∧→R) below are J-operators:

(¬¬)(P) = ¬¬P
(→→R)(P) = (P→R)→R

(∨Q)(P) = P ∨Q
(→R)(P) = P→R

(∨Q ∧→R)(P) = (P∨Q) ∧ (P→R)

Checking that they are J-operators means checking that each of them obeys
J1, J2, J3. Let’s define formally what are J1, J2 and J3 “for a given F : H → H”:

J1F := (P ≤ F (P))
J2F := (F (P) = F (F (P))
J3F := (F (P ∧ P ′) = F (P) ∧ F (P ′))

and:
J123F := J1F ∧ J2F ∧ J3F .

2017planar-has-2 June 30, 2018 13:04

CONTENTS 21

Checking that (¬¬) obeys J1, J2, J3 means proving J123(¬¬) using only the
rules from intuitionist logic from sec.??; we will leave the proof of this, of and
J123(→→R), J123(∨Q), and so on, to the reader.

The J-operator (∨Q ∧→R) is a particular case of building more complex
J-operators from simpler ones. If J,K : H → H, we define:

(J ∧K) := λP :H.(J(P)∧K(P))

it not hard to prove J123(J∧K) from J123J and J123K using only the rules from
intuitionistic logic.

The J-operators above are the first examples of J-operators in Fourman and
Scott’s “Sheaves and Logic” ([FS79]); they appear in pages 329–331, but with
these names (our notation for them is at the right):

(i) The closed quotient,

Jap = a ∨ p JQ = (∨Q).

(ii) The open quotient,

Jap = a→ p JR = (→R).

(iii) The Boolean quotient.

Bap = (p→ a)→ a BR = (→→R).

(iv) The forcing quotient.

(Ja ∧ Jb)p = (a ∨ p) ∧ (b→ p) (JQ ∧ JR) = (∨Q ∧→R).

(vi) A mixed quotient.

(Ba ∧ Ja)p = (p→ a)→ p (BQ ∧ JQ) = (→→Q ∧→Q).

The last one is tricky. From the definition of Ba and Ja what we have is

(Ba ∧ Ja)p = ((p→ a)→ a) ∧ (a→ p),

but it is possible to prove

((p→ a)→ a) ∧ (a→ p) ↔ ((p→ a)→ p)

intuitionistically.
The operators above are “polynomials on P,Q,R,→,∧,∨,⊥” in the termi-

nology of Fourman/Scott: “If we take a polynomial in→,∧,∨,⊥, say, f(p, a, b, . . .),
it is a decidable question whether for all a, b, . . . it defines a J-operator” (p.331).

When I started studying sheaves I spent several years without any visual
intuition about the J-operators above. I was saved by ZHAs and brute force —

2017planar-has-2 June 30, 2018 13:04

CONTENTS 22

and the brute force method also helps in testing if a polynomial (in the sense
above) is a J-operator in a particular case. For example, take the operators
λP :H.(P ∧ 22) and (∨22) on H = [00, 44]:

λP :H.(P ∧ 22) = 20
21
22

22
22

20
21

22
22
22

20
21
22
22

22

10
11
12

12
12

00
01

02
02
02

(∨22) = 42
42
42

43
44

32
32

32
33
34

22
22
22
23

24

22
22
22

23
24

22
22

22
23
24 = 22

The first one, λP :H.(P ∧ 22), is not a J-operator; one easy way to see
that is to look at the region in which the result is 22 — its top element is
44, and this violates the conditions on slash-operators in sec.1.5. The second
operator, (∨22), is a slash operator and a J-operator; at the right we introduce
a convenient notation for visualizing the action of a polynomial slash-operator,
in which we draw only the contours of the equivalence classes and the constants
that appear in the polynomial.

2017planar-has-2 June 30, 2018 13:04

CONTENTS 23

Using this new notation, we have:

(¬¬) = (→→00) =

00

(→→22) = 22

(∨42) = 42 (→24) = 24

(∨42 ∧→24) = 42 24

(→→22 ∧→22) =
22

Note that the slashing for (∨42 ∧ →24) has all the cuts for (∨42) plus all
the cuts for (→24), and (∨42 ∧→24) “forces 42 ≤ 24” in the following sense: if
P ∗ = (∨42 ∧→24)(P) then 42∗ ≤ 24∗.

3.2 An algebra of piccs
We saw in the last section a case in which (J ∧K) has all the cuts from J plus
all the cuts from K; this suggests that we may have an operation dual to that,
that behaves as this: (J ∨K) has exactly the cuts that are both in J and in K:

Cuts(J ∧K) = Cuts(J) ∪ Cuts(K)
Cuts(J ∨K) = Cuts(J) ∩ Cuts(K)

2017planar-has-2 June 30, 2018 13:04

CONTENTS 24

And it J1, . . . , Jn are all the slash-operators on a given ZHA, then

Cuts(J1 ∧ . . . ∧ Jn) = Cuts(J1) ∪ . . . ∪ Cuts(Jk) = (all cuts)
Cuts(J1 ∨ . . . ∨ Jn) = Cuts(J1) ∩ . . . ∩ Cuts(Jk) = (no cuts)

yield the minimal element and the maximal element, respectively, of an algebra
of slash-operators; note that the slash-operator with “all cuts” is the identity
map λP : H.P , and the slash-operator with “no cuts” is the one that takes all
elements to >: λP : H.>. This yields a lattice of slash-operators, in which the
partial order is J ≤ K iff Cuts(J) ⊇ Cuts(K). This is somewhat counterintuitive
if we think in terms of cuts — the order seems to be reversed — but it makes
a lot of sense if we think in terms of piccs (sec.1.1) instead.

Each picc P on {0, . . . , n} has an associated function ·P that takes each
element to the top element of its equivalence class. If we define P ≤ P ′ to mean
∀a ∈ {0, . . . , n}. aP ≤ aP

′ , then we have this:

0
1
2
3
4
5

012345
•
•
•
•
•
•

a

aP

≤
0
1
2
3
4
5

012345

••
••

••

a

aP ′

≤
0
1
2
3
4
5

012345

••

••••

a

aP ′′

≤
0
1
2
3
4
5

012345

••••••

a

aP ′′′

0|1|2|3|4|5 ≤ 01|23|45 ≤ 01|2345 ≤ 012345
P ≤ P ′ ≤ P ′′ ≤ P ′′′

This yields a partial order on piccs, whose bottom element is the identity
function 0|1|2| . . . |n, and the top element is 012 . . . n, that takes all elements to
n.

The piccs on {0, . . . , n} form a Heyting Algebra, where > = 01 . . . n, ⊥ =
0|1| . . . |n, and ‘∧’ and ‘∨’ are the operations that we have discussed above; it is
possible to define a ‘→’ there, but this ‘→’ is not going to be useful for us and
we are mentioning it just as a curiosity. We have, for example:

01234

01|234

OO >

P ∨Q

OO

01|234

0|1|234

??

��
��
01|234

01|2|34

__
??

??
P ∨Q

P

??

��
��
�
P ∨Q

Q

__
??

??
?

0|1|234

0|1|2|34

__
??

??
01|2|34

0|1|2|34

??

��
��

P

P ∧Q

__

??
??

? Q

P ∧Q

??

��
��
�

0|1|2|34

0|1|2|3|4

OO
P ∧Q

⊥

OO

3.3 An algebra of J-operators
Fourman and Scott define the operations ∧ and ∨ on J-operators in pages 325
and 329 ([FS79]), and in page 331 they list ten properties of the algebra of

2017planar-has-2 June 30, 2018 13:04

CONTENTS 25

J-operators:

(i) Ja ∨ Jb = Ja∨b (∨21) ∨ (∨12) = (∨22)
(ii) Ja ∨ Jb = Ja∧b (→32) ∨ (→23) = (→22)
(iii) Ja ∧ Jb = Ja∧b (∨21) ∧ (∨12) = (∨11)
(iv) Ja ∧ Jb = Ja∨b (→32) ∧ (→23) = (→33)
(v) Ja ∧ Ja = ⊥ (∨22) ∧ (→22) = (⊥)
(vi) Ja ∨ Ja = > (∨22) ∨ (→22) = (>)
(vii) Ja ∨K = K ◦ Ja
(viii) Ja ∨K = Ja ◦K
(ix) Ja ∨Ba = Ba

(x) Ja ∨Bb = Ba→b

The first six are easy to visualize; we won’t treat the four last ones. In the
right column of the table above we’ve put a particular case of (i), . . ., (vi) in
our notation, and the figures below put all together.

In Fourman and Scott’s notation,

J22

J> = > = J⊥
??���������

J22

J> = > = J⊥
__?????????

J21

J22??�����
J12

J22 __?????
J32

J22
??�����

J23

J22
__?????

J11

J21 __?????
J11

J12??�����
J11

J32
__?????

J11

J23
??�����

J⊥ = ⊥ = J>

J11 __?????????

J⊥ = ⊥ = J>

J11
??���������

2017planar-has-2 June 30, 2018 13:04

CONTENTS 26

in our notation,

(22∨)

(>∨) = (λP.>) = (⊥→)
??�����������

(22→)

(>∨) = (λP.>) = (⊥→)
__???????????

(21∨)

(22∨)
??����

(12∨)

(22∨)
__????

(32→)

(22→)
??����

(23→)

(22→)
__????

(11∨)

(21∨)
__????

(11∨)

(12∨)
??����

(33→)

(32→)
__????

(33→)

(23→)
??����

(⊥∨) = (λP.P) = (>→)

(11∨)
__???????????

(⊥∨) = (λP.P) = (>→)

(33→)
??�����������

and drawing the polynomial J-operators as in sec.3.1:

22 22

21 12

32 23

11

33

3.4 All slash-operators are polynomial
Here is an easy way to see that all slashings — i.e., J-operators on ZHAs —
are polynomial. Every slashing J has only a finite number of cuts; call them

2017planar-has-2 June 30, 2018 13:04

CONTENTS 27

J1, . . . , Jn. For example:

J =

45
46

34
35

36

22
23
24

25
26

11
12
13

14

00
01
02

03
04

J1 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J2 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

J3 =

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

Each cut Ji divides the ZHA into an upper region and a lower region, and
Ji(00) yields the top element of the lower region. Also, (→→Ji(00)) is a poly-
nomial way of expressing that cut:

J1 =
(→→ 04) = 04

J2 =
(→→ 23) =

23
J3 =

(→→ 45) =

45

The conjunction of these ‘(→→Ji(00))’s yields the original slashing:

(→→ 04) ∧ (→→ 23) ∧ (→→ 45) =
04

23

45

= J

4 Question marks
Every ZHA H is equivalent — by the constructions explained in sections 14–17
of [Och17] — to a 2-column graph (P,A). To be more precise, each ZHA H
has an associated 2CG (P,A), such that this holds: the partial order (H,≤)
is equivalent to (OA(P),⊆), where OA(P) is the “order topology” on P (see
sections 12–13 of [Och17]). We will use squiggly arrows to mean “is associated

2017planar-has-2 June 30, 2018 13:04

CONTENTS 28

to”:

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

oo ///o/o/o/o

1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

.

Choose a subset Q ⊆ P — the “set of question marks”. We will represent Q
graphically by writing a ‘?’ next to each point of P that is in Q. For example,
if Q = {_2,_3} in the 2CG (P,A) above, then

((P,A), Q) =

1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

?

?

Each choice of a subset Q ⊆ P induces an operation that “erases the informa-

tion at question marks”, that works like this. Each element B ∈ H corresponds
to an open subset B′ ⊆ P , and to a characteristic function B′′ : P → {0, 1}:

23 oo ///o/o/o/o pile(23) = {2_, 1_, _3,_2,_1} =

1
1
0
0

1
1
1
0
0
0

If we replace the information on the points of Q ⊆ P by question marks we get
another function, B′′′ : P → {0, ?, 1}:

1
1
0
0

1
1
1
0
0
0
 � //

1
1
0
0

1
?
?
0
0
0

Take another element C ∈ H and “erase its information on the question
marks” according to the same procedure; this yields a function C ′′′ : P →
{0, ?, 1}. We can now understand the equivalence relation induced by Q. We
will say that B and C are Q-equivalent (for this choice of Q; notation: B ∼Q C)
if and only if B′′′ = C ′′′. With the Q of the example we have 23 ∼Q 22.

2017planar-has-2 June 30, 2018 13:04

CONTENTS 29

4.1 Q-equivalences and slashings
Take two neighboring elements of H; their ‘pile’s differ by a single element.
For example, take 22 and 23: we have pile(23)\pile(22) = {_3}. They are
Q-equivalent if and only if _3 ∈ Q. Actually, what we have, in the H of the
example, is:

22 ∼P 23 ↔ _3 ∈ Q 22 6∼P 23 ↔ _3 6∈ Q
12 ∼P 13 ↔ _3 ∈ Q 12 6∼P 13 ↔ _3 6∈ Q
02 ∼P 03 ↔ _3 ∈ Q 02 6∼P 03 ↔ _3 6∈ Q

so — by the ideas of sections 1.2 and 1.4 — _3 6∈ Q is equivalent to a northwest
cut 2/3! This gives us a way to convert between ‘Q’s and slashings. In our
favorite example,

0
1

2
3

4

0
1
2
3
4
5
6

45
46

34
35
36

22
23

24
25
26

11
12

13
14

00
01

02
03
04

5 6∼R 6 _6 6∈ Q
4 ∼R 5 _5 ∈ Q

3 ∼L 4 3 6∼R 4 4_ ∈ Q _4 6∈ Q
2 ∼L 3 2 ∼R 3 3_ ∈ Q _3 ∈ Q
1 ∼L 2 1 ∼R 2 2_ ∈ Q _2 ∈ Q
0 6∼L 1 0 ∼R 1 1_ 6∈ Q _1 ∈ Q

So the slashing S = (4321/0, 0123\45\6) corresponds to Q = {4_, 3_, 2_,
_1,_2,_3,_5} — we have (∼S) = (∼Q). We can represent that with a figure:

45
46

34
35
36

22
23
24
25
26

11
12
13
14

00
01
02
03
04

oo ///o/o/o/o

1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

?

?

?

?

?

?

?

2017planar-has-2 June 30, 2018 13:04

CONTENTS 30

4.2 An algebra of question marks
We can translate the diagrams from sec.3.3 to the language of question marks.
Let’s draw four points of the lattice:

(>∨) = (λP.>) = (⊥→) = =

(
1_
2_
3_
4_

_1
_2
_3
_4

?
?
?
?

?
?
?
?
)

(21∨) =
21

=

(
1_
2_
3_
4_

_1
_2
_3
_4

?
?

?

)
(23→) =

23
=

(
1_
2_
3_
4_

_1
_2
_3
_4

?
? ?

)

(⊥∨) = (λP.P) = (>→) = =

(
1_
2_
3_
4_

_1
_2
_3
_4

)

Let’s write qmarks(J) for the set of question marks of a J-operator J . It’s
easy to see that qmarks(J ∧K) = qmarks(J)∩ qmarks(K) and qmarks(J ∨K) =
qmarks(J) ∪ qmarks(K).

Here are how the boolean quotients and the forcing quotients of sec.3.1 look
when translated to question marks:

(→→22) = 22 =

(
1_
2_
3_
4_

_1
_2
_3
_4

?
?

?

?
?

?
)

(∨42 ∧→24) = 42 24 =

1_
2_
3_
4_
5_
6_

_1
_2
_3
_4
_5
_6

?
?

4.3 Open sets of certain form
Fix a ZHA H and a slashing S on H. Let (P,A) be the 2-column graph asso-
ciated to H and let Q be the set of question marks associated to S.

In section 4 we started with an element B ∈ H, converted it to an open set
B′, took the characteristic function B′′ of that set, and replaced some of the ‘0’s
and ‘1’s by ‘?’s in B′′ to make B′′′. We can think of the B′′′ as a specification,

2017planar-has-2 June 30, 2018 13:04

CONTENTS 31

and ask: which open sets C ′ are of the form B′′′, i.e., what characteristic func-
tions of open sets can be obtained by taking B′′′ and replacing some of its ‘?’s
by ‘0’s and all the other ‘?’s in it by ‘1’? In other words, what are the possible
ways to start with B′′′ and replace all its ‘?’s by ‘0’s and ‘1’s without getting
an arrow ‘1→ 0′?

Let’s write Opens(B′′′) for “the set of all open sets of the form B′′′”. From
this point on, and until the end of this section, we will be a bit sloppy; elements
of Opens(B′′′) will be thought as being either open sets, or their characteristic
functions, or the elements of H associated to those open sets.

It is easy to see that Opens(B′′′) is the S-equivalence class of B, and the
Q-equivalence class of B. We know that S-equivalence classes have maximal
and minimal elements.

There is an easy way to calculate the maximal and the minimum elements
of Opens(B′′′) by hand by working only on the ‘0’s, ‘1’s and ‘?’s drawn on the
2-column graph. First we get rid of the ‘?’s that point to ‘1’s by replacing them
with ‘1’s, and we get rid of the ’?’s that have ‘0’s pointing to them by replacing
them with ‘0’s, and we call the result B′′′′. Here is an example, starting with
B = 12 in our favorite ZHA with a slashing:

B = 12

1

0

0

0

1

1

0

0

0

0

1

?

?

?

?

?

?

0

?

0

1

?

0

0

1

?

?

0

0

0

= B′′′′

It turns out that we can replace all ‘?’s in B′′′′ by ‘1’s and obtain an open
set, and this yields the maximum element of Opens(B′′′) — 23 in the example
—, and we can also replace all the ‘?’s in B′′′′ by ‘0’s and this also yields an
open set, that this time is the minimum element of Opens(B′′′) — 11 in the
example.

These are our two first examples of methods for for reconstructing informa-
tion after erasing it. One method reconstructs it in a maximal way, and returns
the maximal possible result; the other methods reconstructs it in a minimal way
and returns the minimal possible result.

4.4 Reconstructions are adjoint to erasings
Let’s give names to the operations of the last section.

The operation that erases the information on Q will be called “/Q”; we
have B′′′ = B/Q. The “manual” methods for getting rid of all ‘?’s will be
called manualmax and manualmin. We always have manualmin(B/Q) ≤ B ≤
manualmax(B/Q).

2017planar-has-2 June 30, 2018 13:04

CONTENTS 32

Let O(P)/Q = {B/Q | B ∈ O(P) }. All elements in O(P)/Q have question
marks in the same positions, so we can define a partial order in O(P)/Q like
this: if B′′′, C ′′′ ∈ O(P)/Q then B′′′ ≤ C ′′′ if and only the set of points with
‘1’s in B′′′ is contained or equal to the set of point with ‘1’s in C ′′′.

The operations manualmax, /Q, and manualmin are order-preserving maps
between O(P) and O(P)/Q, going in these directions:

O(P)/Q O(P)
manualmin //

O(P)/Q O(P)oo /QO(P)/Q O(P)
manualmax

//

We will now show that we have adjunctions manualmax a /Q a manualmin.
We will suppose that the reader knows enough about adjunctions and Galois
connections — for example at least section 9.4 of [Awo06] (“Order Adjoints”).
The conventions for drawing the diagrams would be practically the same as in
section 13 of [Och13]; the dashed vertical arrows are morphisms in preorder
categories, and each horizontal bijection arrow between dashed vertical arrows
means that the arrow at the left exists if and only if the arrow of the right exists.

The diagram at the left below is the particular case that we saw in last
section; the diagram at the right is a generalization of it. The arrows marked
‘id’ at the left side of each diagram always exist, and the horizontal bijection
arrow assure us that the dashed arrows at the right side exist too; they are the
units and counits of the adjunctions. The operations ‘co∗’ and ‘∗’ of sec.1.5 can
be recovered from these adjunctions: Bco∗ = src(εB), B∗ = tgt(ηB).

12/Q 11� // 11 12co∗12/Q

12/Q

id
���
�
�

11

12

ε12

���
�
�

oo //

12/Q 12oo �12/Q

12/Q

id
���
�
�

12

23

η12

���
�
�

oo //

12/Q 23
� // 23 12∗

O(P)/Q O(P)
manualmin//

O(P)/Q O(P)oo /QO(P)/Q O(P)
manualmin

//

B/Q manualmin(B/Q)� // manualmin(B/Q) Bco∗B/Q

B/Q

id
���
�
�

manualmin(B/Q)

B

εB

���
�
�

oo //

B/Q Boo �B/Q

B/Q

id
���
�
�

B

manualmax(B/Q)

ηB

���
�
�

oo //

B/Q manualmax(B/Q)
� // manualmax(B/Q) B∗

O(P)/Q O(P)
manualmin//

O(P)/Q O(P)oo /QO(P)/Q O(P)
manualmin

//

If we lift the restriction that the dashed maps at the left have to be identities

2017planar-has-2 June 30, 2018 13:04

CONTENTS 33

we get this diagram:

B′′′ manualmin(B′′′)� //B′′′

C/Q
���
�
� manualmin(B′′′)

C
���
�
�

oo //

C/Q Coo �
C/Q

D′′′
���
�
�

C

manualmax(D′′′)
���
�
�

oo //

D′′′ manualmax(D′′′)� //

O(P)/Q O(P)
manualmin//

O(P)/Q O(P)oo /QO(P)/Q O(P)
manualmin

//

in which all dashed arrows now stand for morphisms that may or may not exist,
and the horizontal biections says that the one at the left exists if and only if
the one at the right exists. It is easy to verify that its horizontal bijections are
true, i.e., that for any B,C,D ∈ O(P) we have:

B/Q ≤ C/Q ↔ manualmin(B/Q) ≤ C
C/Q ≤ D/Q ↔ C ≤ manualmax(D/Q)

so we have manualmin a /Q a manualmax.

4.5 A partial order on the non-erased points
The is a way to replace the partial order on O(P)/Q of the last section with
something more familiar: a partial order on the set P\Q of points of P without
question marks. That order has to be the one inherited from O(P), or, to use
the full notation from sections 12 and 15 of [Och17], from OA(P); an example:

1_

2_

3_

4_

_1

_2

_3

_4

_5

_6

?

?

?

?

?

?

?

1_

·

·

·

·

·

·

_4

·

_6

1_

_4

_6

Here is a way to obtain the “best” set of arrows on P\Q. Let R be the
transitive closure of the set of arrows A; note that it will not have any arrow
of the form aRa. Let R′ be R minus its “superfluous arrows” (see sec.17 of
[Och17]), which are the ones of the form aRc for which we have aRbRc for
some b; then R′ is the smallest set of arrows on P\Q that generates the order

2017planar-has-2 June 30, 2018 13:04

CONTENTS 34

inherited from OA(P). By abuse of language, let’s denote this set of arrows on
P\Q by A\Q; its (order) topology is OA\Q(P\Q). The functor

OA\Q(P\Q) oo
restr OA(P)

is naturally isomorhic to the functor O(P)\Q oo OA(P) of the last section, and
we can rewrite the adjunctions as:

W f!W
� //W

f∗V
���
�
� f!W

V
���
�
�

oo //

f∗V Voo �
f∗V

U
���
�
� V

f∗U
���
�
�

oo //

U f∗U
� //

OA\Q(P\Q) OA(P)
f! //

OA\Q(P\Q) OA(P)oo f∗OA\Q(P\Q) OA(P)
f∗

//

5 Sheaves for children
We can use the adjunctions of the last section to understand sheaves — if we are
like the children (“people without mathematical maturity”) of the introduction,
who need concrete examples to understand an abstract definition.

We will draw an adjunction L a R between categories C and D like this:

LC Coo �LC

D
��

C

RD
��

D RD
� //

D Coo L
D C

R
//

oo //

The left adjoint L goes left, the right adjoint R goes right, and the horizontal
bijection arrow ‘ oo // ’ represents the natural isomorphism HomD(L−,−) ∼=
HomC(−, R−).

We will follow the Elephant ([Joh02]). In A4.1.1 it defines a geometric
morphism f : F → E between toposes E and F as an adjunction f∗ a f∗ like
this,

f∗E Eoo �

F f∗F
� //

f∗E

F
��

E

f∗F
��

oo //

F Eoo f∗

F E
f∗

//

F Ef //

2017planar-has-2 June 30, 2018 13:04

CONTENTS 35

in which the functor f∗ preserves finite limits, which is a condition weaker than
requiring that f∗ has a left adjoint. When f∗ has a left adjoint the convention
(see its Example A4.1.4) is to call it f!, and to say that the geometric morphism
f is essential.

The example A4.1.4 of the Elephant starts with a functor f : C → D between
small categories and shows that it induces an essential geometric morphism
f = (f! a f∗ a f∗) between the toposes [C,Set] and [D,Set], where f∗ is
“composition with f” and f∗ can be built by calculating the right Kan extension
lim←−f . Here is a diagram comparing the Elephant’s notation, at the left, with
the one that we will use:

f∗D Doo �

F f∗F
� // f∗F lim←−fF

f∗D

F
��

D

f∗F
��

oo //

[C,Set] [D,Set]oo f
∗

[C,Set] [D,Set]
f∗

//

C Df //

f∗F Foo �

G f∗G
� //

f∗F

G
��

F

f∗G
��

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

A Bf //

Let A and B be these categories (preorders), and let f : A → B be the
inclusion:

A =

(
2 3
↘ ↙ ↘

4 5

)
B =

1

↙ ↘
2 3
↘ ↙ ↘

4 5
↘ ↙

6

Then an object G of SetA and an object F of SetB and can be drawn as

this,

G =

(
G2 G3

↘ ↙ ↘
G4 G5

)
F =

F1

↙ ↘
F2 F3

↘ ↙ ↘
F4 F5

↘ ↙
F6

where G2, . . . , G5, F1, . . . , F6 are sets and the arrows are functions between sets.
The image of F by f∗ is very easy to obtain, it is just a restriction of the diagram
of F . The image of F , f∗G, is harder; we can calculate f∗ by Kan extensions,
but we know that all the right adjoints to f∗ are naturally isomorphic, so we
can also obtain the right adjoint by guess-and-test... it turns out that we can
define f∗G for an arbitrary G in SetA as this,

f∗

(
G2 G3

↘ ↙ ↘
G4 G5

)
=

G2×G4

G3
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5

↘ ↙
1

which yields a result equivalent to using Kan extensions, but with simpler for-
mulas; G2×G4

G3 is a pullback.

2017planar-has-2 June 30, 2018 13:04

CONTENTS 36

The geometric morphism induced by our f : A→ B can be depicted as:

(
F2 F3

↘ ↙ ↘
F4 F5

)
F1

↙ ↘
F2 F3

↘ ↙ ↘
F4 F5

↘ ↙
F6

oo �

(
G2 G3

↘ ↙ ↘
G4 G5

)
G2×G4

G3
↙ ↘

G2 G3
↘ ↙ ↘
G4 G5

↘ ↙
1

� //

(
F2 F3

↘ ↙ ↘
F4 F5

)

(
G2 G3

↘ ↙ ↘
G4 G5

)��

F1

↙ ↘
F2 F3

↘ ↙ ↘
F4 F5

↘ ↙
F6

G2×G4
G3

↙ ↘
G2 G3

↘ ↙ ↘
G4 G5

↘ ↙
1

��

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

Note that B is a two-column graph drawn in a tilted way, and A is the
restriction of its partial order to the subset {2, 3, 4, 5} ⊆ {1, 2, 3, 4, 5, 6}; this is
exactly like we did in sec.4.5, but with a different choice of a 2CG (P,A), and
using {1, 6} as the set of question marks. The associated J-operator is this:

1_

2_

3_

_1

_2

_3

?

?
 oo ///o/o/o/o 30

31
32
33

20
21
22

10
11

00

If the sets G2, . . . , G5, F1, . . . , F6 are only allowed to be either singleton sets
or empty sets, denoted ‘1’ and ‘0’ respectively, then the formula that we obtained
for f∗ yields exactly the “biggest way to reconstruct the missing information”
that we discussed using question marks; if we allow G2, . . . , G5, F1, . . . , F6 to be
arbitrary sets then this formula for f∗ yields something new — an extension of
the idea of J-operator, that was something that acted only on truth-values, to
something that takes a functor F in SetB and produces another one.

The functor f : A → B that we chose has extra properties. Its induced
geometric morphism is an inclusion in the sense of Elephant’s A4.2.8 and A4.2.9,
and every inclusion induces a notion of sheaf (A4.3) — an object F ∈ SetB is
a sheaf iff F is isomorphic to f∗f

∗F — and a category of sheaves; but we will
leave the discussion of this to the next paper in this series, in which we will see
in details how to do categories “for children” and “for adults” in parallel.

2017planar-has-2 June 30, 2018 13:04

REFERENCES 37

5.1 Another example
Let’s switch to a simpler example, the inclusion of “vee” into “kite”:

A =

(
2 3
↘ ↙

4

)
f //

1

↙ ↘
2 3
↘ ↙

4
↓
5

 = B

The unit of the adjunction f∗ a f∗ reconstructs F1 as a pullback and F5 as
a singleton set:

(
F2 F3

↘ ↙
F4

)
F1

↙ ↘
F2 F3

↘ ↙
F4

↓
F5

oo �

(
G2 G3

↘ ↙
G4

)
G2×G4

G3

↙ ↘
G2 G3

↘ ↙
G4

↓
1

� //

(
F2 F3

↘ ↙
F4

)

(
G2 G3

↘ ↙
G4

)��

F1

↙ ↘
F2 F3

↘ ↙
F4

↓
F5

G2×G4
G3

↙ ↘
G2 G3

↘ ↙
G4

↓
1

��oo //

SetA SetBoo f∗

SetA SetB
f∗

//

F1

↙ ↘
F2 F3

↘ ↙
F4

↓
F5

F2×F4
F3

↙ ↘
F2 F3

↘ ↙
F4

↓
1

η��

For some ‘F ’s in SetB the map η is not monic. For example, here, where
the maps from F1 to F2 and F3 drop a digit and the map from F4 to F5 takes
3 to 1:

F =

{46, 64}
↙ ↘

{4, 5} {6}
↘ ↙
{3}
↓

{1, 2}

 η //

{(4, 6), (5, 6)}

↙ ↘
{4, 5} {6}

↘ ↙
{3}
↓

{∗}

 = f∗f
∗F

References
[Awo06] S. Awodey. Category Theory. Oxford University Press, 2006.

[Bel88] J. L. Bell. Toposes and Local Set Theories. Number 14 in Oxford Logic
Guides. Oxford University Press, 1988.

[DP02] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 2002.

[FS79] M.P. Fourman and D.S. Scott. Sheaves and logic. In M.P. Fourman,
D.J. Mulvey, and D.S. Scott, editors, Applications of Sheaves: Pro-
ceedings of the Research Symposium on Applications of Sheaf Theory
to Logic, Algebra and Analysis - Durham, july 9-21, 1977, number 753
in Lecture Notes in Mathematics, pages 302–401. Springer, 1979.

2017planar-has-2 June 30, 2018 13:04

REFERENCES 38

[Joh77] P. T. Johnstone. Topos Theory. Academic Press, 1977.

[Joh02] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Com-
pendium, volume 1. Oxford University Press, 2002.

[MM92] S. MacLane and I. Moerdijk. Sheaves in geometry and logic: a first
introduction to topos theory. Springer, 1992.

[Och13] E. Ochs. Internal diagrams and archetypal reasoning in category the-
ory. Logica Universalis, 7(3):291–321, 9 2013. http://angg.twu.net/
math-b.html#idarct.

[Och17] E. Ochs. Planar heyting algebras for children. Available at http:
//angg.twu.net/math-b.html#zhas-for-children-2, 2017.

2017planar-has-2 June 30, 2018 13:04

http://angg.twu.net/math-b.html#idarct
http://angg.twu.net/math-b.html#idarct
http://angg.twu.net/math-b.html#zhas-for-children-2
http://angg.twu.net/math-b.html#zhas-for-children-2

	Slashings
	Piccs and slashings
	From slash-partitions back to slashings
	Slash-regions have maximal elements
	Cuts stopping midway
	Slash-operators
	Slash-operators: a property

	J-operators
	J-operators and J-regions
	The are no Y-cuts and no -cuts
	How J-operators interact with connectives: the obvious cubes
	How J-operators interact with connectives: the full cubes
	How J-operators interact with connectives: ZHA*-valuations
	Good valuations

	Visualizing the algebra of J-operators
	Polynomial J-operators
	An algebra of piccs
	An algebra of J-operators
	All slash-operators are polynomial

	Question marks
	Q-equivalences and slashings
	An algebra of question marks
	Open sets of certain form
	Reconstructions are adjoint to erasings
	A partial order on the non-erased points

	Sheaves for children
	Another example

