Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file: (find-LATEX "2019J-ops-midway.tex") % See: (find-LATEX "2020J-ops-new.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019J-ops-midway.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019J-ops-midway.pdf")) % (defun e () (interactive) (find-LATEX "2019J-ops-midway.tex")) % (defun u () (interactive) (find-latex-upload-links "2019J-ops-midway")) % (find-pdf-page "~/LATEX/2019J-ops-midway.pdf") % (find-sh0 "cp -v ~/LATEX/2019J-ops-midway.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019J-ops-midway.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019J-ops-midway.pdf % file:///tmp/2019J-ops-midway.pdf % file:///tmp/pen/2019J-ops-midway.pdf % http://angg.twu.net/LATEX/2019J-ops-midway.pdf % (find-LATEX "2019.mk") % «.cuts-stopping-midway» (to "cuts-stopping-midway") % «.no-Y-cuts-no-L-cuts» (to "no-Y-cuts-no-L-cuts") \directlua{tf_push("2019J-ops-midway.tex")} % ____ _ _ _ % / ___| _| |_ ___ ___| |_ ___ _ __ _ __ (_)_ __ __ _ % | | | | | | __/ __| / __| __/ _ \| '_ \| '_ \| | '_ \ / _` | % | |__| |_| | |_\__ \ \__ \ || (_) | |_) | |_) | | | | | (_| | % \____\__,_|\__|___/ |___/\__\___/| .__/| .__/|_|_| |_|\__, | % |_| |_| |___/ % % «cuts-stopping-midway» (to ".cuts-stopping-midway") % (jonp 11 "cuts-stopping-midway") % (jom "cuts-stopping-midway") % (p2lp 3 "cuts-stopping-midway") % (p2l "cuts-stopping-midway") \section{Cuts stopping midway} \label{cuts-stopping-midway} Look at the figure below, that shows a partition of a ZHA $A=[00,66]$ into five regions, each region being an interval; this partition does not come from a slashing, as it has cuts that stop midway. Define an operation `$·^*$' on $A$, that works by taking each truth-value $P$ in it to the top element of its region; for example, $30^*=61$. % %L mp = mpnew({def="foo", meta="10pt"}, "1234567654321") %L mp:addlrs():addcuts("c 10w-14n 11n-61n 42w-46n 44n-04e"):output() $$\pu \foo $$ % It is easy to see that `$·^*$' obeys $\J1$ and $\J2$; however, it does {\sl not} obey $\J3$ --- we will prove that in sec.\ref{no-Y-cuts-no-L-cuts}. As we will see, {\sl the partitions of a ZHA into intervals that obey $\J1$, $\J2$, $\J3$ ae exactly the slashings;} or, in other words, {\sl every J-operator comes from a slashing}. % _ _ __ __ _ % | \ | | ___ \ \ / / ___ _ _| |_ ___ % | \| |/ _ \ \ V / / __| | | | __/ __| % | |\ | (_) | | | | (__| |_| | |_\__ \ % |_| \_|\___/ |_| \___|\__,_|\__|___/ % % «no-Y-cuts-no-L-cuts» (to ".no-Y-cuts-no-L-cuts") % (jonp 11 "no-Y-cuts-no-L-cuts") % (jom "no-Y-cuts-no-L-cuts") % (p2lp 4 "no-Y-cuts-no-L-cuts") % (p2l "no-Y-cuts-no-L-cuts") \subsection{The are no Y-cuts and no $\lambda$-cuts} \label {no-Y-cuts-no-L-cuts} % Good (ph2p 12 "no-Y-cuts-no-L-cuts") We want to see that if a partition of a ZHA $H$ into intervals has ``Y-cuts'' or ``$λ$-cuts'', like these parts of the last diagram in sec.\ref{cuts-stopping-midway}, % %R local Y, La = %R 2/ 22 \, 2/ 25 \ %R |21 12| |24 15| %R \ 11 / \ 14 / %R %R Y :tozmp({def="Ycut", scale="10pt"}):addcells():addcuts("00w-01n 10e-10n"):output() %R La:tozmp({def="Lcut", scale="10pt"}):addcells():addcuts("00w-00n 00e-10n"):output() $$\pu \begin{array}{rcl} \Ycut &\Leftarrow& \text{this is a Y-cut} \\\\ \Lcut &\Leftarrow& \text{this is a $λ$-cut}\\ \end{array} $$ % then the operation $J$ that takes each element to the top of its equivalence class cannot obey $\J1$, $\J2$ and $\J3$ at the same time. We will prove that by deriving rules that say that if $11 \eqJ 12$ then $21 \eqJ 22$, and that if $15 \eqJ 25$ then $14 \eqJ 24$; actually, our rules will say that if $11^* = 12^*$ then $(11∨21)^* = (12∨21)^*$, and that if $15^*=25^*$ then $(15∧24)^*=(25∧24)^*$. The rules are: % (fooi "!!" "²" "!" "¹" "^*" "¹" "<=" "≤" "->" "→" "&" "∧" "vv" "∨") % %: Q¹=R¹ %: --------- %: P∨Q¹=P∨R¹ %: --------------- %: Q¹=R¹ (P∨Q¹)¹=(P∨R¹)¹ %: ---------------\NoYcuts := ===============\ostarcube %: (P∨Q)¹=(P∨R)¹ (P∨Q)¹=(P∨R)¹ %: %: ^NoYcuts1- ^NoYcuts2- %: %: P¹=Q¹ %: --------- %: P∨R¹=Q∨R¹ %: --------------- %: P¹=Q¹ (P∨R¹)¹=(Q∨R¹)¹ %: ---------------\NoYcuts := ================\oor_6=\oor_4 %: (P∨R)¹=(Q∨R)¹ (P∨R)¹=(Q∨R)¹ %: %: ^NoYcuts1 ^NoYcuts2 %: %: %: Q¹=R¹ %: ---------- %: Q¹=R¹ P¹∧Q¹=P¹∧R¹ %: ---------------\NoLcuts := ------------\J3 %: (P∧Q)¹=(P∧R)¹ (P∧Q)¹=(P∧R)¹ %: %: ^NoLcuts1- ^NoLcuts2- %: %: P¹=Q¹ %: ---------- %: P¹=Q¹ P¹∧R¹=Q¹∧R¹ %: ---------------\NoLcuts := ------------\J3 %: (P∧R)¹=(Q∧R)¹ (P∧R)¹=(Q∧R)¹ %: %: ^NoLcuts1 ^NoLcuts2 %: $$\pu \begin{array}{rcl} \ded{NoYcuts1} &:=& \ded{NoYcuts2} \\ \\ \ded{NoLcuts1} &:=& \ded{NoLcuts2} \\ \\ \end{array} $$ The expansion of double bar labeled `$\oor_6=\oor_4$' in the top derivation uses twice the derived rule $\oor_6=\oor_4$, that is easy to prove using the cubes of sec.\ref{cubes}. \directlua{tf_pop()} % Local Variables: % coding: utf-8-unix % ee-tla: "jom" % End: