Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file: (find-LATEX "2019J-ops-kan.tex") % See: (find-LATEX "2020J-ops-new.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019J-ops-kan.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019J-ops-kan.pdf")) % (defun e () (interactive) (find-LATEX "2019J-ops-kan.tex")) % (defun u () (interactive) (find-latex-upload-links "2019J-ops-kan")) % (find-pdf-page "~/LATEX/2019J-ops-kan.pdf") % (find-sh0 "cp -v ~/LATEX/2019J-ops-kan.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019J-ops-kan.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019J-ops-kan.pdf % file:///tmp/2019J-ops-kan.pdf % file:///tmp/pen/2019J-ops-kan.pdf % http://angg.twu.net/LATEX/2019J-ops-kan.pdf % (find-LATEX "2019.mk") % «.kan-extensions» (to "kan-extensions") \directlua{tf_push("2019J-ops-kan.tex")} % _ __ _ % | |/ /__ _ _ __ _____ _| |_ ___ % | ' // _` | '_ \ / _ \ \/ / __/ __| % | . \ (_| | | | | | __/> <| |_\__ \ % |_|\_\__,_|_| |_| \___/_/\_\\__|___/ % % «kan-extensions» (to ".kan-extensions") % (jonp 36 "kan-extensions") % (jop "kan-extensions") % (favp 45 "kan-extensions") % (fav "kan-extensions") \subsection{Kan extensions} \label {kan-extensions} \def\Lan{\text{Lan}} \def\Ran{\text{Ran}} \def\sfC{\mathsf{C}} \def\sfD{\mathsf{D}} \def\sfE{\mathsf{E}} % (find-books "__cats/__cats.el" "riehl") % (find-riehlccpage (+ 18 44) "1.7. The 2-category of categories") % (find-riehlcctext (+ 18 44) "1.7. The 2-category of categories") % (find-riehlccpage (+ 18 45) "Lemma 1.7.4 (horizontal composition)") % (find-riehlcctext (+ 18 45) "Lemma 1.7.4 (horizontal composition)") % (find-riehlccpage (+ 18 46) "whiskering") % (find-riehlcctext (+ 18 46) "whiskering") % (find-riehlccpage (+ 18 189) "6. All Concepts are Kan Extensions") % (find-riehlccpage (+ 18 190) "6.1. Kan extensions") % (find-riehlccpage (+ 18 190) "Dually, a right Kan") % (find-riehlcctext (+ 18 190) "Dually, a right Kan") In \cite{Riehl}, sec.6.1, right Kan extensions are explained using the two diagrams below. The notation of cells is explained in sec.1.7 of the book, and modulo the types --- that can be inferred from the diagrams --- a right Kan extension of $K$ along $K$ is a pair $(\Ran_K F,ε)$ such that for all $(G,α)$ there is a unique $β$ making everything commute. % %D diagram riehl-ran-1 %D 2Dx 100 +40 +40 %D 2D 100 A0 ---> A2 %D 2D -> -> %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \mathsf{C} \mathsf{D} \mathsf{E} %D %D (( A0 A2 -> .plabel= a F %D A0 A1 -> .plabel= l K %D A1 A2 -> .plabel= r G .curve= _25pt %D A1 A2 varrownodes nil 17 nil <= .slide= -5pt .plabel= r δ %D )) %D enddiagram %D %D diagram riehl-ran-factored %D 2Dx 100 +40 +40 %D 2D 100 A0 ---> A2 %D 2D -> -> ^ %D 2D +40 A1 -/ %D 2D %D ren A0 A1 A2 ==> \mathsf{C} \mathsf{D} \mathsf{E} %D %D (( A0 A2 -> .plabel= a F %D A0 A1 -> .plabel= l K %D A1 A2 -> .plabel= m \Ran_KF %D A1 A2 -> .plabel= r G .curve= _25pt %D A0 A2 varrownodes 35 17 nil <= .plabel= l ε %D A1 A2 varrownodes 20 17 nil <= .slide= 5pt .plabel= r β %D )) %D enddiagram %D $$\pu \diag{riehl-ran-1} \quad \diag{riehl-ran-factored} $$ If we specialize $\sfE$ to $\Set$ and do some renamings, the diagram becomes: % %D diagram my-ran-1 %D 2Dx 100 +40 +40 %D 2D 100 A0 A2 %D 2D %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \catA \catB \Set %D %D (( A0 A2 -> .plabel= a D %D A0 A1 -> .plabel= l f %D A1 A2 -> .plabel= r C .curve= _25pt %D A1 A2 varrownodes nil 17 nil <= .slide= -5pt .plabel= r α %D )) %D enddiagram %D %D diagram my-ran-2 %D 2Dx 100 +40 +40 %D 2D 100 A0 A2 %D 2D %D 2D +40 A1 %D 2D %D ren A0 A1 A2 ==> \catA \catB \Set %D %D (( A0 A2 -> .plabel= a D %D A0 A1 -> .plabel= l f %D A1 A2 -> .plabel= m \Ran_fD %D A1 A2 -> .plabel= r C .curve= _25pt %D A0 A2 varrownodes 35 17 nil <= .plabel= l ε %D A1 A2 varrownodes 20 17 nil <= .slide= 5pt .plabel= r β %D )) %D enddiagram %D $$\pu \diag{my-ran-1} \quad \diag{my-ran-2} $$ % and if we change its {\sl shape} to stress that $ε$ ``looks like'' a counit map and $\Ran_f$ ``looks like'' the right adjoint to the functor $f^*$, we get this: % %D diagram geo-morph %D 2Dx 100 +30 +35 +30 %D 2D 100 L0 C0 C1 R1 %D 2D %D 2D +35 L2 C2 C3 R3 %D 2D %D 2D +20 C4 C5 %D 2D %D 2D +20 C6 C7 %D 2D %D ren C0 C1 C2 C3 C4 C5 ==> f^*C C D \Ran_fD \Set^\catA \Set^\catB %D ren C6 C7 ==> \catA \catB %D ren L0 L2 ==> f^*\Ran_fD D %D ren R1 R3 ==> C \Ran_ff^*C %D %D (( C0 C1 <-| %D C0 C2 -> .plabel= l \sm{β^\fl\\α} %D C1 C3 -> .plabel= r \sm{β\\α^♯} %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil <-| sl^ %D C0 C3 harrownodes nil 20 nil |-> sl_ %D %D C4 C5 <- sl^ .plabel= a f^* %D C4 C5 -> sl_ .plabel= b \Ran_f %D %D C6 C7 -> .plabel= a f %D L0 L2 -> .plabel= l ε %D R1 R3 -> .plabel= r d %D )) %D enddiagram %D $$\pu \diag{geo-morph} $$ When the categories $\catA$ and $\catB$ are finite posets we get: \begin{itemize} \item $\Set^\catA$ and $\Set^\catB$ are toposes (we saw this in sec.\ref{Set-PA}), % % (jopp 23 "Set-PA") % (joe "Set-PA") \item the functor $f^*$ is ``precomposition with $f$'', in this sense: if $C$ is an object of $\Set^B$ and $A∈\catA$ then $(f^*C)(A)$ is $C(f(A))$, \item the left and right Kan extensions $\Lan_f$ and $\Ran_f$ and can be defined and calculated by the formulas in sec.6.2 of \cite{Riehl}, % % (elep 7 "elephant-A4.1.4") % (ele "elephant-A4.1.4") % (find-books "__cats/__cats.el" "riehl") % (find-riehlccpage (+ 18 193) "6.2. A formula for Kan extensions") \item we have adjunctions $\Lan_f ⊣ f^* ⊣ \Ran_f$, and so the structure $(\Lan_f ⊣ f^* ⊣ \Ran_f)$ can be seen as an essential geometric morphism $f:\Set^\catA → \Set^\catB$ (\cite{EA}, A4.1.4); as $f^*$ is a right adjoint it preserves limits (\cite{Riehl}, sec.4.5, and \cite{Awodey}, sec.9.6), and so $(f^* ⊣ \Ran_f)$ is a geometric morphism $f:\Set^\catA → \Set^\catB$. We usually rename $(\Lan_f ⊣ f^* ⊣ \Ran_f)$ to $(f^! ⊣ f^* ⊣ f_*)$ \item when $f:\catA→\catB$ is something very simple we can find $\Ran_f D$ ``by hand'' --- for example, in the example below, discussed in \cite{OchsACT2019}: % % (oxap 5 "fig:internal-gms") % (oxa "fig:internal-gms") % %R sesw = {[" w"]="↙", [" e"]="↘"} %R %R local zcB, zpBC, zpBRD %R = 3/ 1 \, 3/ C_1 \, 3/ !Dt \ %R | w e | | w e | | w e | %R | 2 3 | |C_2 C_3 | |D_2 D_3 | %R | e w e | | e w e | | e w e | %R | 4 5 | | C_4 C_5| | D_4 D_5| %R | e w | | e w | | e w | %R \ 6 / \ C_6 / \ 1 / %R %R local zpBRLC %R = 3/ !Ct \ %R | w e | %R |C_2 C_3 | %R | e w e | %R | C_4 C_5| %R | e w | %R \ 1 / %R %R local zcA, zpALC, zpAD %R = 3/ 2 3 \, 3/C_2 C_3 \, 3/D_2 D_3 \ %R | e w e | | e w e | | e w e | %R \ 4 5 / \ C_4 C_5/ \ D_4 D_5/ %R %R zcB :tozmp({def="zcB", scale="7pt", meta="s p"}):addcells(sesw):output() %R zpBC :tozmp({def="zpBC", scale="7pt", meta="s p"}):addcells(sesw):output() %R zpBRD :tozmp({def="zpBRD" , scale="7pt", meta="s p"}):addcells(sesw):output() %R zpBRLC:tozmp({def="zpBRLC", scale="7pt", meta="s p"}):addcells(sesw):output() %R zcA :tozmp({def="zcA", scale="7pt", meta="s p"}):addcells(sesw):output() %R zpALC :tozmp({def="zpALC", scale="7pt", meta="s p"}):addcells(sesw):output() %R zpAD :tozmp({def="zpAD", scale="7pt", meta="s p"}):addcells(sesw):output() % %D diagram internal-zgm-particular-case %D 2Dx 100 +50 +60 +55 %D 2D 100 A1 B1 <-| B2 C1 %D 2D | | | | %D 2D | | <-> | | %D 2D v v v v %D 2D +50 A2 B3 |-> B4 C2 %D 2D %D 2D +30 D1 <=> D2 %D 2D %D 2D +20 E1 --> E2 %D 2D %D 2D +30 F1 F2 %D 2D %D ren A1 B1 B2 C1 ==> \zpALC \zpALC \zpBC \zpBC %D ren A2 B3 B4 C2 ==> \zpAD \zpAD \zpBRD \zpBRLC %D ren D1 D2 ==> \Set^\catA \Set^\catB %D ren E1 E2 ==> \Set^\catA \Set^\catB %D ren F1 F2 ==> \catA \catB %D ren F1 F2 ==> \zcA \zcB %D %D (( A1 A2 -> .plabel= l εD %D C1 C2 -> .plabel= r ηC %D %D B1 B2 <-| %D B1 B3 -> B2 B4 -> %D B3 B4 |-> %D B1 B4 harrownodes nil 20 nil <-> %D %D D1 D2 <- sl^ .plabel= a f^* %D D1 D2 -> sl_ .plabel= b f_* %D E1 E2 -> .plabel= a f %D %D F1 F2 -> .plabel= a f %D )) %D enddiagram %D % $$\pu \def\Ct{C_2 {×_{C_4}} C_3} \def\Dt{D_2 {×_{D_4}} D_3} \diag{internal-zgm-particular-case} $$ \end{itemize} \bsk Every situation in which the category $\catB$ is a $(P,A)$ and the category $\catA$ is the full subcategory of $(P,A)$ whose objects are $P∖Q$ yields a situation like the one in the diagram above, in which the maps $εD$ are isos, the geometric morphism $f$ is an ``inclusion'' and the functor that takes each $C$ to $f_*f^*C$ is a sheafification functor. A diagram with an example fully worked out will be included in the next version of this paper at the Arxiv. % (find-books "__cats/__cats.el" "riehl") % (find-riehlccpage (+ 18 136) "4.5. Adjunctions, limits, and colimits") % (find-books "__cats/__cats.el" "awodey") % (find-awodeyctpage (+ 10 197) "9.6 RAPL") \newpage \directlua{tf_pop()} % Local Variables: % coding: utf-8-unix % ee-tla: "jok" % End: