
July 2018 ISSN 2631-4444

On some missing diagrams in the Elephant
Eduardo Ochs

Universidade Federal Fluminense, Rio das Ostras, RJ, Brazil

2019-05-03

Imagine two category theorists, Aleks and Bob, who both think
very visually and who have exactly the same background. One day
Aleks discovers a theorem, T1, and sends an e-mail, E1, to Bob, stat-
ing and proving T1 in a purely algebraic way; then Bob is able to
reconstruct by himself Aleks’s diagrams for T1 exactly as Aleks has
thought them. We say that Bob has reconstructed the missing dia-
grams in Aleks’s e-mail.
Now suppose that Carol has published a paper, P2, with a theo-

rem T2. Aleks and Bob both read her paper independently, and both
pretend that she thinks diagrammatically in the same way as them.
They both “reconstruct the missing diagrams” in P2 in the same way,
even though Carol has never used those diagrams herself.
Here we will reconstruct, in the sense above, some of the “missing

diagrams” in two factorizations of geometric morphisms in section
A4 of Johnstone’s “Sketches of an Elephant”, and also some “miss-
ing examples”. Our criteria for determining what is “missing” and
how to �ll out the holes are essentially the ones presented in the
“Logic for Children” workshop at the UniLog 2018; they are derived
from a certain de�nition of “children” that turned out to be especially
fruitful.

One of the themes of the workshop [5] was a set of techniques for drawing
diagrams for general cases and for particular cases in parallel, in a way that
makes both diagrams have similar shapes, and that lets us transfer knowledge
from the general to the particular and back. The term “for children” in the title
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of the workshop comes from some peoples’ reactions to Category Theory: “I
need a version for children of that!”. We de�ned children in a certain way in order
to get guidelines for how to construct a version “for children” of a categori-
cal text; namely, “children”: 1) prefer to start from particular cases and then
generalize; 2) like diagrams and like �nite objects that can be drawn explicitly;
3) become familiar with mathematical ideas by calculating and by checking
several cases (i.e., by “playing”), rather than by proving theorems.

1 Categories with coordinates

Let’s see a way to de�ne �nite categories whose objects have coordinates in N2

and whose arrows can be named by just their sources and targets. We call these
categories ZCategories, and it’s easier to start with an example. The left half of
Figure 1 is a ZCategory A whose objects are A0 = {1, 2, 3, 4, 5}, with coordinates
c(1) = (0, 2), c(2) = (1, 1), c(3) = (2, 1), c(4) = (1, 0), c(5) = (2, 0). The arrow
2 → 4 belongs to A, but it is not shown. The right half of Figure 1 is a functor
F : A→ Set — a ZPresheaf.

A =



1

2
��???????1

3''
OOOOOOOOOOOOO1

4
��/

///////////

2 3//2

4
��

3

5
��

4 5//


F =



F1

F2
��??????F1

F3
''OOOOOOOOOOOF1

F4
��/

///////////

F2 F3//F2

F4
��

F3

F5
��

F4 F5//


Figure 1: A ZCategory and a ZPresheaf.

A ZSet is a �nite set P ⊂ N2 that touches both the x-axis and the y-axis. A
ZDirectedGraph is a pair (P,A) where P is a ZSet and A ⊆ P ×P is a set of arrows.
We write (P,A∗) for the transitive-re�exive closure of (P,A).
The section 1 of [7] de�nes positional notations for ZSets and for functions

with ZSets as their domains. They’re like this:


(1,3),
(0,2), (2,2),

(1,1),
(1,0)

 = =


((1,3),4),

((0,2),5), ((2,2),6),
((1,1),7),
((1,0),8)

 =
4

5 6
7
8

The condition “...that touches both thex-axis and the y-axis” lets us draw ZSets
as just bullets, omitting the axes.
A ZCategory B is a category plus a structure ((P,A), c), called its drawing

instructions, obeying: 1) (P,A) is a ZDirectedGraph; 2) c : B0 → P is a bijection
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between the objects ofB and the ZSet P ; 3) for any objectsD,E ∈ B the hom-set
HomB(D,E) is singleton when (c(D), c(E)) ∈ A∗, and is empty when (c(D), c(E)) 6∈

A∗. The conditions 1–3 imply that a ZCategory is a �nite preorder category; the
coordinates say where each object is to be drawn, and the set A says which
arrows are to be drawn explicitly; the other arrows are said to be implicit.
A ZTopos is a functor category of the form SetB, where B is a ZCategory.

Objects of a ZTopos SetB inherit the drawing instructions from B, as the F in
the example above.
We call the objects of a ZTopos ZPresheaves. Note that a presheaf P on B is

an element of SetBop, which means that for each arrow D → E in B the presheaf
P returns an arrow P (D → E) : PE → PD in Set; ZPresheaves don’t have this
reversal of direction.

2 Internal Diagrams

Internal diagrams are a tool that lets us lower the level of abstraction. They merge
ideas from the standard notation for declaring functions with the way we used
to draw functions in school, using arrows between the elements of blob-sets.
Look at Figure 2, at the left. Compare its ‘N→ R’ in the upper line (the external
view), with the ‘n 7→ √n’ in the lower line (the internal view); the n 7→ √n
shows a (generic) element and its image. The middle part of Figure 2 shows
the external view at the bottom and an internal view at the top; note that all
elements in the blobs for N and R are named, but only a few of the elements
are shown (compare with [4], p.3); the arrows like 3 7→

√
3 and 4 7→ 2, that show

elements and their images, are substitution instances of the generic n 7→ √n,
maybe after some calculations (or “reductions” in λ-calculus terminology).
The right part of Figure 2 shows an adjunction L a R between categories A

and B, drawn in our favourite “shape” (see [9], where all this is explained in
detail): with the functor L going left and the functor R going right. We don’t
draw blobs to stress that B,LA,LRB ∈ B and A,RB,RLA ∈ A, and we draw
“generic” unit and counit maps.

3 Geometric morphisms (and how to draw them)

A geometric morphism f : E → F is an adjunction (f∗ a f∗) between toposes E
and F plus the assurance that f∗ is exact; a ZGM is a geometric morphism gen-
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√ : N → R

n 7→
√
n

−1
0 0� //

1 1� //

2
√

2� //

3
√

3� //

4 2� //

n
√
n� //

N R
√

//

LRB

B

εB

��

A

RLA

ηA

��

LA Aoo L0 �LA

B

f

��

A

RB

g

��
B RB�

R0
//

oo [AB ��
]AB

//

B Aoo L
B A

R
//

Figure 2: The standard notation for defining a function;
An internal view and the external view of the function √ ;
An internal view and the external view of an adjunction L a R.

erated by a functor f : A→ B between ZCategories (a ZFunctor), in the following
sense. A functor f : A→ B induces a geometric morphism f : SetA → SetB be-
tween ZToposes; where f∗ is de�ned “by composition”. The right adjoint f∗ can
be calculated by the Kan extension formula, but in small examples it is better
to calculate it directly by guess-and-test. Figure 3 shows how we draw a geo-
metric morphism and a ZGM; Figure 4 shows why we are interested in ZGMs:
if we choose ZCategories A and B we can replace several objects of our diagram
for ZGMs by their internal views, and this gives us a way to “understand” the
adjunction and the unit and counit maps.

4 Planar Heyting Algebras and 2-Column Graphs

The preprints [7] and [8] explain how to use 2-column graphs (“2CGs”) to de-
velop visual intuition about intuitionistic logic (the �rst one) and sheaves (the
second one).
The central construction in [7] can be stated as: every 2CG is associated

to a Planar Heyting Algebra (a “ZHA”, de�ned in section 4 of [7]) and vice-
versa, and the central construction in [8] is: every 2CG with question marks is
associated to a ZHA with a J-operator and vice-versa. This can be represented
as:

(P,A) H

((P,A), Q) (H,J)

where the ‘ ’ is pronounced “is associated to”. Formally, (P,A) H
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f∗f∗D

D

εD

��

C

f∗f
∗C

ηC

��

f∗C Coo �f∗C

D
��

C

f∗D
��

D f∗D
� //

oo //

E Foo f∗

E F
f∗

//

E Ff //

f∗f∗D

D

εD

��

C

f∗f
∗C

ηC

��

f∗C Coo �f∗C

D
��

C

f∗D
��

D f∗D
� //

oo //

SetA SetBoo f
∗

SetA SetB
f∗
//

SetA SetBf //

A Bf //

Figure 3: A geometric morphism and a ZGM.

(
C2 C3
↘ ↙ ↘
C4 C5

)

(
D2 D3
↘ ↙ ↘
D4 D5

)
εD

��


C1
↙ ↘

C2 C3
↘ ↙ ↘
C4 C5
↘ ↙
C6




C2×C4C3
↙ ↘

C2 C3
↘ ↙ ↘
C4 C5
↘ ↙

1


ηC

��

(
C2 C3
↘ ↙ ↘
C4 C5

) 
C1
↙ ↘

C2 C3
↘ ↙ ↘
C4 C5
↘ ↙
C6

oo �
(
C2 C3
↘ ↙ ↘
C4 C5

)

(
D2 D3
↘ ↙ ↘
D4 D5

)��


C1
↙ ↘

C2 C3
↘ ↙ ↘
C4 C5
↘ ↙
C6




D2×D4D3
↙ ↘

D2 D3
↘ ↙ ↘
D4 D5
↘ ↙

1


��(

D2 D3
↘ ↙ ↘
D4 D5

) 
D2×D4D3
↙ ↘

D2 D3
↘ ↙ ↘
D4 D5
↘ ↙

1

� //

oo //

SetA SetBoo f∗

SetA SetB
f∗

//

SetA SetBf //

(
2 3
↘ ↙ ↘

4 5

) 
1

↙ ↘
2 3
↘ ↙ ↘

4 5
↘ ↙

6

f //

Figure 4: A ZGM in a particular case.
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when H is isomorphic to the order topology OA(P ), and ((P,A), Q) (H,J)

when (P,A) H and besides that the equivalence relation that Q induces
on OA(P ) is the same as the equivalence that the J-operator J induces on H.
Here’s why this is relevant to us. We can regard a 2CG (P,A) as a ZCategory.

The logic of the ZTopos Set(P,A) — i.e., its Sub(1)— is exactly OA(P ). Also, each
sheaf shj(Set(P,A)) on Set(P,A) corresponds to a set of question marks Q ⊆ P and
vice-versa.
These constructions are easy to understand if we have a concrete example,

so look at Figure 6.
The representation of the characteristic function of a subset S ⊆ P , χS, is

the diagram that we obtain from (P,A) by replacing each point of P by 1 when
it belongs to S and by 0 when not. We say that S obeys the condition of an
arrow (α → β) ∈ A when χS(α) ≤ χS(β), and that S violates the condition of an
(α → β) ∈ A when χS(α) = 1 and χS(β) = 0. A subset S ⊆ P is A-open when it
obeys the conditions of all arrows in A. OA(P ) is the set of all A-open subsets
of P .
A speci�cation for a 2CG is a 4-uple (l, r, R, L); it generates a 2CG (P,A) with

P := pile(lr), and with sets of intercolumn arrows R (going right) and L (going
left). The set A of arrows of (P,A) is R∪L plus all the intracolumn arrows that
point one step down. The 2CG (P,A) in Figure 5 is generated by this speci�ca-
tion:

(4, 6,
{ 4_→_5,

3_→_4,
2_→_2,
1_→_1,

}
, { 2_←_5 })

We write pile(ab) for the set {a_, . . . , 1_, _1, . . . ,_b}; χpile(a,b) is a pile of a ‘1’s
in the left column and b ‘1’s in the right column. A pile(ab) automatically obeys
the conditions of the vertical arrows in A (as they all point one step down), and
it is possible to translate the intercolumn arrows into conditions in the ‘ab’s
(sec.15 of [7]). The speci�cation above becomes this:

OA(P ) = { pile(ab) | a ∈ {0, . . . , 4}, b ∈ {0, . . . , 6},
( a≥4→ b≥5 ∧
a≥3→ b≥4 ∧
a≥2→ b≥2 ∧
a≥1→ b≥1

)
∧ ( a≥2← b≥5 ) }

that lets us draw the ZHA H ∼= OA(P ) very quickly — and lets us check the
‘ ’ in the top of Figure 6.
In the lower half of Figure 6 the set of question marks is Q = {4_, 3_, 2_,

_1,_2,_3,_5, }. The subsets S, S′ ⊆ P are Q-equivalent when S and S′ only
di�er in points of Q, i.e., S\Q = S′\Q. In the example, pile(22) ∼Q pile(23) 6∼Q
pile(24).
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(P,A) H

((P,A), Q) (H,J)

Figure 5: The correspondence between 2CGs and ZHAs: the general case.


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Figure 6: The correspondence between 2CGs and ZHAs: an example.
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Figure 7: The closed operator (13∨) (right) and its associated question marks (left).
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A J-operator on a Heyting Algebra H is an operation J : H → H, abbreviated
as ‘·∗’, obeying P ≤ P ∗ = P ∗∗ and (P ∧Q)∗ = P ∗ ∧Q∗. The “slashing” in the ZHA
of the lower half of Figure 6 induces a J-operator that takes each element of
H to the top element of its equivalence class: J(12) = 23. We say that A,B ∈ H
are J-equivalent when A∗ = B∗. In the example, 22 ∼J 23 6∼J 24. It is not hard
to see that in this case (∼Q) = (∼P ).
Figure 7 shows the “closed” J-operator (13∨), that takes each A ∈ H to 13∨A;

it would be called J13(p) = 13 ∨ p in the notation of [3], page 329, 2.18.(i).

5 Question marks and sheaves

A J-operator J in a ((P,A), Q) (H,J) can be interpreted in the topos
Set(P,A) as an operation J : Sub(1) → Sub(1) on its truth-values. This J can be
extended to a local operator (see [EA4.4]) j : Ω → Ω in the topos Set(P,A). The
Elephant uses local operators instead of J-operators practically everywhere;
our (13∨) corresponds to a “closed local operator” c(pile(13)) in it — see [EA
p.206].
Each set of question marks Q ⊆ P induces an operation that erases the

information on objects associated to the points of Q and an operation that
“reconstructs” this information on those objects in a “natural” way. Figure 4
shows a case of this erasing and reconstruction, with Q = {1, 6}.
It is possible to show that in Figure 4 and in all similar cases the image of

f∗ is a sheaf and η is a shea��cation functor. By “all similar cases” we mean:
the points of A are a subset of the points of B, and the partial order on A is the
restriction to those points of the partial order on B. We will need a notation for
that. If B is drawn as the directed graph (P,A) and S ⊆ P , then we draw B as
(S,A|S), where A|S ⊆ S×S is a set of arrows on S that obeys (A|S)∗ = (S×S)∩A∗.
We refer to that as a restriction ofA toS, or as a restriction ofAwith questionmarks
Q, where Q = P\S.

6 Two factorizations of geometric morphisms

The Elephant presents in its sections A4.2 and A4.5 two factorizations of geo-
metric morphisms that can be combined in a single diagram — see Figure 8.
An arbitrary geometry morphism g : A → D can be factored in an essentially
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unique way as a surjection followed by an inclusion ([EA4.2.10]), and an in-
clusion i : B → D can be factored in an essentially unique way as a dense g.m.
followed by a closed g.m. ([EA4.5.20]). A canonical way to build these factor-
izations is by taking B := AG, where G is a certain comonad on A ([EA4.2.8]),
and taking C := shj(D), where j is a certain local operator on D.

A D
g (any g.m.) //

A B
s (surjection) // B D

i (inclusion) //

B C
d (dense) // C D

c (closed) //

AG shj(D)

Figure 8: Two factorizations of geometric morphisms.

SetA SetDg (any g.m.) //

SetA SetBs (surjection) // SetB SetDi (inclusion) //

SetB SetCd (dense) // SetC SetDc (closed) //

(SetA)G shj(SetD)

A Dg //

A Bs // B Di //

B Cd // C Dc //

Figure 9: The same factorizations, but on ZGMs.

s∗s∗A

A
��

B

s∗s
∗B

(monic)
��

s∗B Boo �s∗B

A
��

B

s∗A
��

A s∗A
� //

oo //

SetA SetBoo s
∗

SetA SetB
s∗
//

A Bs //

i∗i∗B

B

(iso)
��

D

i∗i
∗D
��

i∗D Doo �i∗D

B
��

D

i∗B
��

B i∗B
� //

oo //

SetB SetDoo i∗

SetB SetD
i∗

//

B Di //

d∗d∗B

B
��

kC

d∗d
∗kC

(monic
on c.p.s)��

d∗C Coo �d∗C

B
��

C

d∗B
��

B d∗B
� //

oo //

SetB SetCoo d
∗

SetB SetC
d∗
//

B Cd //

c∗c∗C

C
��

D

c∗c
∗D
��

c∗D Doo �c∗D

C
��

D

c∗C
��

C c∗C
� //

oo //

SetC SetDoo c
∗

SetC SetD
c∗
//

C Dc //

Figure 10: Conditions on the functors A s→ B i→ D and B d→ C.
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These factorizations are almost completely opaque to people who know just
the basics of toposes. How can we produce a version “for children” of them in
the sense of section ???
The trick is to start with geometric morphisms whose internal views can

be drawn explicity — the ZGMs of section 2. Actually we start with the lower
level of Figure 2, and with the belief that all factorizations can be performed
within ZGMs.

7 Two factorizations of ZGMs

The Elephant de�nes surjections by a list of equivalent conditions, and the
same for inclusions and dense and closed geometric morphisms. Some of these
conditions — the ones drawn in Figure 10 — are very easy to test on ZGMs.
1. SetA s→ SetB is a surjection when for every object B ∈ SetB the unit map

ηB is monic ([EA4.2.6 (iv)]);
2. SetB i→ SetD is an inclusion when for every object B ∈ SetB the counit

map εB is an iso ([EA4.2.8]);
3. SetB d→ SetC is an dense when for every constant presheaf kC the unit

map εkC is a monic [I can’t �nd a reference for this now].

We also have two conditions for “dense” and “close” that are easy to state
on “restrictions” in the sense of section 5 — but it’s not trivial to derive them
from the material in the Elephant. Let’s state them anyway:
4. A restriction SetB d→ SetC is dense when all its question marks “have

non-question marks ahead of them”, i.e.: for every α in C such that α ∈ Q

there is an arrow α→ β in C with β 6∈ Q;
5. A restriction SetC d→ SetD is closed when all its question marks “are at

the end”, i.e.: there are no arrows α→ β in D with α ∈ Q and β 6∈ Q.

We will say that a ZFunctorA s→ B induces a surjection when the ZGM SetA s→

SetB induced by it is a surjection; and the same for inclusion, dense, and closed.
How can we factor a ZFunctor A g→ D into ZFunctors A s→ B i→ D that

induce a surjection and an inclusion, and how do we factor this B i→ D into
B d→ C c→ D? Here is a way to get a good part of a possible answer.
We can think that a ZFunctor f : X → Y does several actions. If we think

that X is “before” and Y is “after”, then f can, for example: create isolated
objects, collapse isolated objects, collapse two ordered objects, create an arrow,
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create objects at the beginning of a connected set, create objects at the middle
of a connected set, create objects at the end of a connected set... here are some
examples that only do one of these actions each:

(1→1′) → (1)

(1 1′) → (1)

(1 2) → (1→2)

(2) → (1→2)

(1→3) → (1→2→3)

(1) → (1 2)

(1) → (1→2)

When we take A g→ D as each one of the seven ZFunctors and we try to
factor that g as A s→ B d→ C c→ D we see that the �rst three functors factor as
(s = g, d = id, c = id), the next two as (s = id, d = g, c = id), and the last two as
(s = id, d = id, c = g). The leads to a:

Conjecture 1 Take a ZFunctorA g→ D. Factor it intoA s→ B d→ C c→ D in the follow-
ing way: s collapses objects and creates arrows; c creates objects at the middle and
at the beginnings of connected sets; d creates objects at the ends of connected sets.
Then this factorization of ZFunctors induces a surjective-dense-closed factorization
of ZGMs.

8 Epilogue: timber

Sections 1, 10, 11, 12, and 16 of [6] discuss how to reconstruct theorems from
incomplete versions that take very little mental space, or very little space on
paper; we do something similar here.
One idea that was widely circulated after the �re in the Notre Dame cathe-

dral was that it would be impossible to reconstruct its roof, because that would
require an entire forest full of old oak trees, and that thing doesn’t exist any-
more... but I saw a thread on Tweeter1 that contained these tweets: “The
steeple and the beams supporting it are 160 years old, and oaks for new beams
awaits at Versailles, the grown replacements for oaks cut to rebuild after the
revolution.” “Do you have a source on that protocol? Would love to hear more

1https://twitter.com/_theek_/status/1117895531563372544
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- feel free to DM.” “It was a lecture I attended at Versailles on disaster recov-
ery and long term planning. Once per century events have to be planned for
in a city where structures are a thousand years old.” “It was a lecture from a
decade ago. I’m sorry that I don’t have more details but there must be better
sources than me out there. It’s similar to the oaks at Oxford grown to replace
the ones that rot out every 500 years, on schedule.”
Sometimes we have to deal with a Topos Theory whose timber is made from

Algebric Geometry oaks. Sometimes, for one reason or another, we want to be
prepared to replace them by oaks from Computer Science, or with oaks coming
from �nite examples. The structure of the cathedral modulo these timbers can
be described in several forms; some more algebraic, some more diagramatic,
like the idea of “shape” in our Figures 3 and 10 and in [9].
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