Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% This file: (find-LATEX "2019J-ops-logic.tex") % See: (find-LATEX "2020J-ops-new.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019J-ops-logic.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019J-ops-logic.pdf")) % (defun e () (interactive) (find-LATEX "2019J-ops-logic.tex")) % (defun u () (interactive) (find-latex-upload-links "2019J-ops-logic")) % (find-pdf-page "~/LATEX/2019J-ops-logic.pdf") % (find-sh0 "cp -v ~/LATEX/2019J-ops-logic.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019J-ops-logic.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019J-ops-logic.pdf % file:///tmp/2019J-ops-logic.pdf % file:///tmp/pen/2019J-ops-logic.pdf % http://angg.twu.net/LATEX/2019J-ops-logic.pdf % (find-LATEX "2019.mk") % «.J-operators» (to "J-operators") \directlua{tf_push("2019J-ops-logic.tex")} % _ % | | ___ _ __ ___ % _ | |_____ / _ \| '_ \/ __| % | |_| |_____| (_) | |_) \__ \ % \___/ \___/| .__/|___/ % |_| % % «J-ops-and-regions» (to ".J-ops-and-regions") % «J-operators» (to ".J-operators") % (jonp 8 "J-operators") % (jol "J-operators") % J-regions and J-operators % (p2lp 1 "J-operators") % (p2l "J-operators") \section{J-operators} \label {J-operators} % Good (ph2p 9 "J-ops-and-regions") % (fooi "Ω" "H") A {\sl J-operator} on a Heyting Algebra $H ≡ (H,≤,⊤,⊥,∧,∨,→,↔,¬)$ is a function $J:H→H$ that obeys the axioms $\J1$, $\J2$, $\J3$ below; we usually write $J$ as $·^*:H→H$, and write the axioms as rules. % %L addabbrevs(".\\eqJ.", " \\eqJ ") %L addabbrevs("&", "\\&", "vv", "∨", "->", "→") %L -- addabbrevs("<=", "≤", "!!", "^{**}", "!", "^*") % (fooi "!!" "²" "!" "¹" "^*" "¹" "<=" "≤" "->" "→" "&" "∧" "vv" "∨") %: %: -----\J1 ------\J2 ------------\J3 %: P≤P¹ P¹=P² (P∧Q)¹=P¹∧Q¹ %: %: ^J1 ^J2 ^J3 %: \pu $$\ded{J1} \qquad \ded{J2} \qquad \ded{J3}$$ \par $\J1$ says that the operation $·^*$ is non-decreasing. \par $\J2$ says that the operation $·^*$ is idempotent. \par $\J3$ is a bit mysterious but will have interesting consequences. \msk % Note that when $H$ is a ZHA then any slash-operator on $H$ is a % J-operator on it; see secs.\ref{slash-ops} and % \ref{slash-ops-property}. % % \msk A J-operator induces an equivalence relation and equivalence classes on $H$, like slashings do: % $$\begin{array}{rcl} P \eqJ Q &\text{iff}& P^*=Q^* \\[5pt] \relax [P]^J &:=& \setofst{Q∈H}{P^*=Q^*} \\ \end{array} $$ % The equivalence classes of a J-operator $J$ are called {\sl $J$-regions}. \msk The axioms $\J1$, $\J2$, $\J3$ have many consequences. The first ones are listed in Figure \ref{fig:J-ops-basic-derived-rules} as derived rules, whose names mean: $\Mop$ (monotonicity for products): a lemma used to prove $\Mo$, $\Mo$ (monotonicity): $P≤Q$ implies $P^*≤Q^*$, $\Sand$ (sandwiching): all truth values between $P$ and $P^*$ are equivalent, $\ECa$: equivalence classes are closed by `$\&$', $\ECv$: equivalence classes are closed by `$∨$', $\ECS$: equivalence classes are closed by sandwiching, % (fooi "!!" "²" "!" "¹" "^*" "¹" "<=" "≤" "->" "→" "&" "∧" "vv" "∨") %: %: ------------\J3 --------- %: (P∧Q)¹=P¹∧Q¹ P¹∧Q¹≤Q¹ %: ----------\Mop := --------------------------- %: (P∧Q)¹≤Q¹ (P∧Q)¹≤Q¹ %: %: ^Mop1 ^Mop2 %: %: P≤Q %: ===== %: P=P∧Q %: --------- ----------\Mop %: P≤Q P¹=(P∧Q)¹ (P∧Q)¹≤Q¹ %: ------\Mo := --------------------- %: P¹≤Q¹ P¹≤Q¹ %: %: ^Mo1 ^Mo2 %: %: Q≤P¹ %: -----\Mo ------\J2 %: P≤Q Q¹≤P² P²=P¹ %: ------\Mo --------------- %: P≤Q≤P¹ P¹≤Q¹ Q¹≤P¹ %: --------\Sand := ---------------------- %: P¹=Q¹ P¹=Q¹ %: %: ^Sand1 ^Sand2 %: %: %: P¹=Q¹ %: =========== ------------\J3 %: P¹=Q¹ P¹=Q¹=P¹∧Q¹ P¹∧Q¹=(P∧Q)¹ %: ------------\ECa := -------------------------- %: P¹=Q¹=(P∧Q)¹ P¹=Q¹=(P∧Q)¹ %: %: ^ECa1 ^ECa2 %: P¹=Q¹ %: -----\J1 ----- %: Q≤Q¹ Q¹=P¹ %: -----\J1 --------------- %: P≤P¹ Q≤P¹ %: ------- ----------------- %: P≤P∨Q P∨Q≤P¹ %: ---------------- %: P≤P∨Q≤P¹ %: -----------\Sand %: P¹=Q¹ P¹=Q¹\bk P¹=(P∨Q)¹ %: ------------\ECv := ------------------ %: P¹=Q¹=(P∨Q)¹ P¹=Q¹=(P∨Q)¹ %: %: ^ECv1 ^ECv2 %: %: P¹=R¹ %: ----\J1 ----- %: P≤Q≤R R≤R¹ R¹=P¹ %: ---------------------- %: P≤Q≤P¹ %: --------\Sand %: P≤Q≤R P¹=R¹ P¹=Q¹ P¹=R¹ %: ------------\ECS := -------------------- %: P¹=Q¹=R¹ P¹=Q¹=R¹ %: %: ^ECS1 ^ECS2 %: \begin{figure} \pu \resizebox{\textwidth}{!}{% \fbox{$ \def\bk{HELLO} \def\bk{\hspace{-1cm}} \begin{array}{rcl} \\ \ded{Mop1} &:=& \ded{Mop2} \\ \\ \ded{Mo1} &:=& \ded{Mo2} \\ \\ \ded{Sand1} &:=& \ded{Sand2} \\ \\ \ded{ECa1} &:=& \ded{ECa2} \\ \ded{ECv1} &:=& \ded{ECv2} \\ \\ \ded{ECS1} &:=& \ded{ECS2} \\ \\ \end{array} $} } \caption{J-operators: basic derived rules} \label{fig:J-ops-basic-derived-rules} \end{figure} \bsk Take a J-equivalence class, $[P]^J$, and list its elements: $[P]^J = \{P_1, \ldots, P_n\}$. Let $P_∧ := ((P_1∧P_2)∧\ldots)∧P_n$ and $P_∨ := ((P_1∨P_2)∨\ldots)∨P_n$. Clearly $P_∧ ≤ P_i ≤ P_∨$ for each $i$, so $[P]^J ⊆ [P_∧,P_∨]$. We will use the interval notation $[P,R]$ to mean the set of all elements of $H$ obeying $P≤Q≤R$: % $$[P,R] \;\; = \;\; \setofst{Q∈H}{P≤Q≤R}.$$ Using $\ECa$ and $\ECv$ several times we see that: % $$\begin{array}{rrr} P_1∧P_2 \eqJ P && P_1∨P_2 \eqJ P \\ (P_1∧P_2)∧P_3 \eqJ P && (P_1∨P_2)∨P_3 \eqJ P \\ \vdots\phantom{mmmm} && \vdots\phantom{mmmm} \\ ((P_1∧P_2)∧\ldots)∧P_n \eqJ P && ((P_1∨P_2)∨\ldots)∨P_n \eqJ P \\ P_∧ \eqJ P && P_∨ \eqJ P \\[5pt] P_∧ ∈ [P]^J && P_∨ ∈ [P]^J \\ \end{array} $$ % and using $\ECS$ we can see that all elements between $P_∧$ and $P_∨$ are $J$-equivalent to $P$: %: %: P_∧.\eqJ.P P_∨.\eqJ.P %: ---------- ---------- %: {P_∧}^*=P^* {P_∨}^*=P^* %: ---------------------- %: P_∧≤Q≤P_∨ {P_∧}^*={P_∨}^* %: --------------------------------\ECS %: {P_∧}^*=Q^*={P_∨}^* {P_∨}^*=P^* %: ------------------------------------------- %: Q^*=P^* %: --------- %: Q.\eqJ.P %: %: ^foo %: $$\pu \ded{foo} $$ % so $[P_∧,P_∨] ⊆ [P]^J$. This means that {\sl J-regions are intervals}. % (find-LATEX "2015planar-has.tex" "J-operators") % (find-planarhaspage 13 "Part 2:" "J-operators and ZQuotients") % (find-planarhastext 13 "Part 2:" "J-operators and ZQuotients") % (find-LATEX "2015planar-has.tex" "J-derived-rules") % (find-planarhaspage 15 "Derived rules") % (find-planarhastext 15 "Derived rules") \directlua{tf_pop()} % Local Variables: % coding: utf-8-unix % ee-tla: "jol" % End: