Downcasing SDGAnders Kock: A simple axiomatics for differentiation (1977) Quick index:1. Proposition 7 ================ Proposition 7: for any f: A --> A, the diagram b |-> c \tdf A×A ------> A×A b.b_a |------> c,c_a | | - - \aa | | \aa | | v v v v A^D ------> A^D da|->b+db |--> da|->c+dc f^D b,b_a |--------> c,c_{b}b_a - - | v v da|->c+c_{b}b_{a}dx da|->b+b_{a}da |--> da|->c(b+b_{a}da) commutes, where \tdf: A×A -> A×A is the map with the description (a_0, a_1) -> (f(a_0), a_1·f'(a_0)) b,b_a |--------> c,c_{b}b_a Proof: it suffices to prove that the exponential adjoint diagram commutes. The exponential diagram is the outer diagram in \tdf×D A×A×D ------> A×A×D b,b_a,da |---------> c,c_a,da | \ | - / - \aa×D | \ \czaa | \aa×D | \---\ | v v v v v | A^D×D --> A A^D×D (da|->b+db),da |-> b+db | | ev \ | - / | f^D×D | f \ | ev | \ | v ev v v v v v A^D×D --------> A (da|->c+dc),da |--------> d+dc b,b_a,da |------------------------> c,c_{b}b_{a},da - / - | \-------\ | v v v (da|->b+b_{a}da),da |-> b+b_{a}da (da|->c+c_{b}b_{a}da),da - / - | \-----\ v v v c+c_{b}b_{a}da (da|->c(b+b_{a}da)),da |-------------------> c(b+b_{a}da) |