Quick
index
main
eev
eepitch
maths
angg
blogme
dednat6
littlelangs
PURO
(C2,C3,C4,
 λ,ES,
 GA,MD,
 Caepro,
 textos,
 Chapa 1)

emacs
lua
(la)tex
maxima
 qdraw
git
lean4
agda
forth
squeak
icon
tcl
tikz
fvwm
debian
irc
contact

Downcasing SDG

Anders Kock: A simple axiomatics for differentiation (1977)

Quick index:
1. Proposition 7
================
Proposition 7: for any f: A --> A, the diagram
                          b |-> c

          \tdf
     A×A ------> A×A      b.b_a |------> c,c_a
      |           |         -              -
  \aa |           | \aa     |              |
      v           v         v              v
     A^D ------> A^D     da|->b+db |--> da|->c+dc
          f^D

                       b,b_a |--------> c,c_{b}b_a
		         -                   -
		         |                   v
		         v             da|->c+c_{b}b_{a}dx
		   da|->b+b_{a}da |--> da|->c(b+b_{a}da)


commutes, where \tdf: A×A -> A×A is the map with the description

  (a_0, a_1) -> (f(a_0), a_1·f'(a_0))
   b,b_a |--------> c,c_{b}b_a

Proof: it suffices to prove that the exponential adjoint diagram
commutes. The exponential diagram is the outer diagram in

            \tdf×D
      A×A×D ------> A×A×D          b,b_a,da |---------> c,c_a,da
        |   \         |                -   /               -
  \aa×D |    \ \czaa  | \aa×D          |    \---\          |
        v     v       v                v         v         |
      A^D×D --> A   A^D×D       (da|->b+db),da |-> b+db    |
        |   ev    \   |                -               /   |
  f^D×D |        f \  | ev             |                \  |
        v     ev    v v                v                 v v
      A^D×D --------> A         (da|->c+dc),da |--------> d+dc


         b,b_a,da |------------------------> c,c_{b}b_{a},da
            -	 /			            -
            |	  \-------\		            |
            v		   v                        v
    (da|->b+b_{a}da),da |-> b+b_{a}da   (da|->c+c_{b}b_{a}da),da
            -			     /            -  
            |			      \-----\     v
            v				     v c+c_{b}b_{a}da
  (da|->c(b+b_{a}da)),da |-------------------> c(b+b_{a}da)