Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
####### # # E-scripts on ipython. # # Note 1: use the eev command (defined in eev.el) and the # ee alias (in my .zshrc) to execute parts of this file. # Executing this file as a whole makes no sense. # An introduction to eev can be found here: # # (find-eev-quick-intro) # http://angg.twu.net/eev-intros/find-eev-quick-intro.html # # Note 2: be VERY careful and make sure you understand what # you're doing. # # Note 3: If you use a shell other than zsh things like |& # and the for loops may not work. # # Note 4: I always run as root. # # Note 5: some parts are too old and don't work anymore. Some # never worked. # # Note 6: the definitions for the find-xxxfile commands are on my # .emacs. # # Note 7: if you see a strange command check my .zshrc -- it may # be defined there as a function or an alias. # # Note 8: the sections without dates are always older than the # sections with dates. # # This file is at <http://angg.twu.net/e/ipython.e> # or at <http://angg.twu.net/e/ipython.e.html>. # See also <http://angg.twu.net/emacs.html>, # <http://angg.twu.net/.emacs[.html]>, # <http://angg.twu.net/.zshrc[.html]>, # <http://angg.twu.net/escripts.html>, # and <http://angg.twu.net/>. # ####### # «.trig-subst» (to "trig-subst") # «.2015.2-C2-P1» (to "2015.2-C2-P1") # «.2015.2-C2-P2» (to "2015.2-C2-P2") # «.2016.1-C2-P1» (to "2016.1-C2-P1") # «.foci» (to "foci") # «.bel-6-11» (to "bel-6-11") # «.2016.1-GA-P2» (to "2016.1-GA-P2") # «.2016.1-C2-P2» (to "2016.1-C2-P2") # «.2016.1-GA-VR» (to "2016.1-GA-VR") # «.2016.1-C2-VR» (to "2016.1-C2-VR") # «.2016.1-C2-VS» (to "2016.1-C2-VS") # «.2016.2-GA-P1» (to "2016.2-GA-P1") # «.2016.2-C2-P1» (to "2016.2-C2-P1") # «.2016.2-C2-P2» (to "2016.2-C2-P2") # «.2017.1-GA-P1» (to "2017.1-GA-P1") # «.2017.1-GA-P2» (to "2017.1-GA-P2") # «.2017.1-GA-VR» (to "2017.1-GA-VR") # «.2017.2-GA-VS» (to "2017.2-GA-VS") # «.2017.1-C2-P1» (to "2017.1-C2-P1") # «.2017.1-C2-P2» (to "2017.1-C2-P2") # «.2017.1-C2-VS» (to "2017.1-C2-VS") # «.2017.2-C2-P2» (to "2017.2-C2-P2") # «.2018.2-C2-P1» (to "2018.2-C2-P1") # «.2018.2-C2-P2» (to "2018.2-C2-P2") # «.2018.2-C2-P2-q2» (to "2018.2-C2-P2-q2") # «.2018.2-C2-P2-q4» (to "2018.2-C2-P2-q4") # «.2018.2-C2-VS» (to "2018.2-C2-VS") # «.2019.1-C2-P1» (to "2019.1-C2-P1") # «.2019.1-C2-P2» (to "2019.1-C2-P2") # «.2019.1-C2-VR» (to "2019.1-C2-VR") # «.2019.1-C2-VS» (to "2019.1-C2-VS") # # «.2019.1-C3-P1» (to "2019.1-C3-P1") # «.2019.1-C3-VR» (to "2019.1-C3-VR") # «.2019.2-C3-P2» (to "2019.2-C3-P2") # «.2019.2-C3-VR» (to "2019.2-C3-VR") # «.2019.2-C3-VS» (to "2019.2-C3-VS") # «.2019.2-C2-P1» (to "2019.2-C2-P1") # «.2019.2-C2-P2» (to "2019.2-C2-P2") # «.2019.2-C2-VR» (to "2019.2-C2-VR") # «.2019.2-C2-VS» (to "2019.2-C2-VS") # «.2020.1-int-subst» (to "2020.1-int-subst") # «.2020.1-C2-MT1» (to "2020.1-C2-MT1") # «.2020.1-C2-P1» (to "2020.1-C2-P1") # «.2020.1-C2-P2» (to "2020.1-C2-P2") # «.2020.1-C3-P1» (to "2020.1-C3-P1") # «.2020.1-C3-P2» (to "2020.1-C3-P2") # «.watts-strogatz» (to "watts-strogatz") # «.bortolossi-5.5» (to "bortolossi-5.5") # «.perspective» (to "perspective") # «.2021.1-C3-P1» (to "2021.1-C3-P1") # «.2021.1-C2-P2» (to "2021.1-C2-P2") # (find-angg ".emacs" "ipython") # (find-esgrep "grep --color -niH -e ipython *.e") # (find-esgrep "grep --color -niH -e sympy *.e") # (find-es "python" "ipython") # (find-es "sympy" "tutorial") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) from sympy import apart from sympy import together together(1/x + 1/y + 1/z) together(apart((x+1)/(x-1), x), x) together(apart(1/( (x+2)*(x+1) ), x), x) apart((x+1)/(x**2 + x - 20), x) apart((x**3)/(x**2 + x - 20), x) together(1/(x-2) + 1/(x+5)) together(3/(x-2) + 4/(x+5)) together(3/(x-2) - 2/(x-3) + 4/(x+5)) together(3/(x-2) - 2/(x-3) + 4/(x+5)).expand() ((x-2) *(x+5)).expand() ((x-2)*(x-3) ).expand() ((x-2)*(x-3)*(x+5)).expand() together(4/(x-2) + 1/(x-3) + 5/(x+5)).expand() (4*(x**2 + 2*x - 15) + 1*(x**2 + 3*x - 10) + 5*(x**2 - 5*x + 6)).expand() ((2 * x**2 + 3 * x + 4) * (5 * x**2 - x**2 ((x**2 + 2 * x + 3) * (x**2 - 2 * x + 1)).expand() ((x**2 + 2 * x + 3) * (x**2 - 2 * x + 1) + (4*x - 3)).expand() * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) s = Symbol("s") integrate(s**3 / sqrt(1 - s**2), s) integrate(s**3 / sqrt(1 - s**2), (s, -1, 1/2)) arccos(1/2) arcsin(1/2) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # from sympy import diff, Symbol, sin, tan x = Symbol('x') diff(atan(x), x) diff(asec(x), x) diff(sin(2*x), x) diff(tan(x), x) integrate(1/(x**2 + 1), x) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) from sympy import Rational R = Rational A = Matrix([1, 1]) P = Matrix([R(8, 5), R(1, 5)]) A - P ##### # # Testing trigonometric substitutions # 2016mar23 # ##### # «trig-subst» (to ".trig-subst") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # from sympy.mpmath import * from sympy import * c, s, t, th, a, b = symbols("c,s,t,th,a,b") trigs0 = lambda f: lambda s: f(s, sqrt(1 - s**2)) trigt0 = lambda f: lambda t: f(s, sqrt(1 - t**2)) trigz0 = lambda f: lambda z: f(z, sqrt(z**2 - 1)) trigs1 = lambda f: lambda th: f(sin(th), cos(th)) * sin(th) trigt1 = lambda f: lambda th: f(tan(th), sec(th)) * (tan(th**2 + 1)) trigz1 = lambda f: lambda th: f(sec(th), tan(th)) * sec(th) * tan(th) trigs0i = lambda f, a, b: integrate(trigs0(f)(s), (s, a, b)) trigt0i = lambda f, a, b: integrate(trigt0(f)(t), (t, a, b)) trigz0i = lambda f, a, b: integrate(trigz0(f)(z), (z, a, b)) trigs1i = lambda f, a, b: integrate(trigs1(f)(th), (th, asin(a), asin(b))) trigt1i = lambda f, a, b: integrate(trigt1(f)(th), (th, atan(a), atan(b))) trigz1i = lambda f, a, b: integrate(trigz1(f)(th), (th, asec(a), asec(b))) trigs0I = lambda f, a, b: Integral(trigs0(f)(s), (s, a, b)) trigt0I = lambda f, a, b: Integral(trigt0(f)(t), (t, a, b)) trigz0I = lambda f, a, b: Integral(trigz0(f)(z), (z, a, b)) trigs1I = lambda f, a, b: Integral(trigs1(f)(th), (th, asin(a), asin(b))) trigt1I = lambda f, a, b: Integral(trigt1(f)(th), (th, atan(a), atan(b))) trigz1I = lambda f, a, b: Integral(trigz1(f)(th), (th, asec(a), asec(b))) trigs0I(lambda s, c: s**2, a, b) trigs1I(lambda s, c: s**2, a, b) trigz0I(lambda z, t: t / z**3, a, b) trigz1I(lambda z, t: t / z**3, a, b) trigs0i(lambda s, c: 2, 0, 1) trigt0i(lambda t, z: 2, 0, 1) trigz0i(lambda z, t: 2, 0, 1) # http://docs.sympy.org/0.7.2/modules/mpmath/functions/trigonometric.html?highlight=atan#asec # http://docs.sympy.org/0.7.6/modules/mpmath/functions/trigonometric.html?highlight=asec # http://docs.sympy.org/0.7.6/modules/mpmath/basics.html?highlight=mpmath asec(1) ##### # # 2015.2-C2-P1 # 2016mar23 # ###### # «2015.2-C2-P1» (to ".2015.2-C2-P1") # (find-angg "LATEX/2015-2-C2-P1.tex") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # Questao 1: a = Symbol("a") integrate(x**2 * cos(a*x), x) integrate(x**2 * cos(2*x), (x, 0, pi)) # Questao 2: integrate(x**3 / (x**2 + x - 20), x) # Questao 3: # (find-es "sympy" "numerical-integration") from sympy.mpmath import * integrate(sqrt(z**2 - 1) / z**3, z) fz1 = lambda z: sqrt(z**2 - 1) / z**3 ft1 = lambda th: tan(th)**2 / sec(th**2) ft1 = lambda th: (1 - cos(2*th)) / 2 intz = lambda fz, za, zb: quad(fz, [za, zb]) intt = lambda ft, za, zb: quad(ft, [arcsec(za), arcsec(zb)]) intz(fz1, 2, 3) intz(ft1, 2, 3) ##### # # 2015.2-C2-P2 # 2016mar23 # ###### # «2015.2-C2-P2» (to ".2015.2-C2-P2") # (find-angg "LATEX/2015-2-C2-P2.tex") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) S = exp(-x) * sin(2*x) C = exp(-x) * cos(2*x) diff(C, x) diff(S, x) diff(diff(C, x), x) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) diff(x**3, x) diff(sec(x), x) diff(tan(x), x) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) po = ((x-5)/5)**2 + ((y-6)/4)**2 - 1 po (po*400).expand() * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) from sympy import apart from sympy import together together(1/x + 1/y + 1/z) apart(x / (x**2 + x - 6), x) apart(1 / (x**2 + x - 6), x) ##### # # 2016.1: Cálculo 2, P1, gabarito # 2016jul27 # ##### # «2016.1-C2-P1» (to ".2016.1-C2-P1") # (find-angg "LATEX/2016-1-C2-P1.tex") # (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf") # (find-es "python" "tuples") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) s, th = symbols("s th") def differenc(body, xab): return body.subs(xab[0], xab[2]) - body.subs(xab[0], xab[1]) def differen2(body, xab): return (body.subs(xab[0], xab[2]), body.subs(xab[0], xab[1])) R = Rational # 1: # (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf" 3) # Obs: revisão ok, e a minha solução é melhor que a do sympy. # # O intervalo que nos interessa é onde tan(th) não é infinito, # que é onde sen(th)/cos(th) não é infinito, # que é onde cos(th) > 0, # que é onde -pi/2 < th < pi/2. # expr1 = tan(th) integrate(tan(th), th, manual=True) integrate(tan(th), th) `integrate(tan(th), th)` Expr1 = -log(sin(th)**2 - 1)/2 # SymPy's solution (with manual=False) Expr2 = -log(abs(cos(th))) # my solution Expr1 Expr2 a, b = 0.1, 0.2 integrate(expr1, (th, a, b)) differenc(Expr1, (th, a, b)) differenc(Expr2, (th, a, b)) differen2(Expr1, (th, a, b)) # SymPy's solution has complex numbers differen2(Expr2, (th, a, b)) # my solution has everything real # 2: # (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf" 3) # Obs: ainda não revisei. # integrate(x**-4, x) integrate(x**-4, (x, 1, 2)) # small integrate(x**-4, (x, -1, -1/1000000)) # big integrate(x**-4, (x, 1/1000000, 1)) # big integrate(x**-4, (x, 1/1000000, 2)) # big + small # 3: # (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf" 3) # Obs: revisão ok. # ee, en, cc, ss = symbols("ee en cc ss") (ee + 1/ee)**4 ((ee + 1/ee)**4).expand() ((ee + 1/ee)**4).expand() / 16 (((ee + 1/ee)**4).expand() / 16).subs(ee, cos(th) + I*sin(th)) (((ee + 1/ee)**4).expand() / 16).subs(ee, cos(th) + I*sin(th)).subs(th, 0.1) expr0 = cos(th)**4 expr1 = ((ee + 1/ee)**4 / 16).expand() expr2 = ((ee + en)**4 / 16).expand() expr3 = expr2.subs(ee, cos(th) + I*sin(th)).subs(en, cos(th) - I*sin(th)) expr4 = R(1,8) * cos(4*th) + R(1,2) * cos(2*th) + R(3,8) expr0 expr1 expr2 expr3 expr4 a = 0.1 a = 0.2 expr0.subs(th, a).expand() expr1.subs(th, a).expand() expr2.subs(th, a).expand() expr3.subs(th, a).expand() expr4.subs(th, a).expand() integrate (expr4, th) `integrate(expr4, th)` Expr4 = 3*th/8 + sin(2*th)/4 + sin(4*th)/32 Expr4 expr0 expr4 integrate (expr0, th, manual=True) integrate (expr0, th) `integrate(expr0, th)` integrate (expr4, th) `integrate(expr4, th)` Expr4 a, b = 0.1, 0.2 integrate(expr0, (th, a, b)) integrate(expr4, (th, a, b)) differenc(Expr4, (th, a, b)) # 4: # (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf" 3) # Obs: revisão ok. # apart (x**2 / (x**2 + x - 2), x) integrate(x**2 / (x**2 + x - 2), x) # 5: # (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf" 4) # Obs: revisão ok. # integrate(x * exp(x) * cos(x), x) # 6: # (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf" 4) from sympy.mpmath import quad # from sympy.mpmath import * expr1x = sqrt(4 - x**2) expr1s = 4 * sqrt(1 - s**2) expr1th = 4 * sqrt(1 - sin(th)**2) * cos(th) expr2th = 4 * cos(th)**2 expr3th = 4 * (1 + cos(2*th))/2 Expr3th = 4 * (th/2 + sin(2*th)/4) Expr4th = 2*th + sin(2*th) Expr4s = Expr4th.subs(th, asin(s)) Expr4x = Expr4s .subs(s, x/2) Expr3th Expr4th Expr4s Expr4x lamb1th = lambda th: 4 * sqrt(1 - sin(th)**2) * cos(th) lamb1s = lambda s: 4 * sqrt(1 - s**2) lamb1x = lambda x: sqrt(4 - x**2) a, b = 0.1, 0.2 sa, sb = a/2, b/2 ta, tb = asin(sa), asin(sb) integrate (expr1x, (x, a, b)) integrate (expr1s, (s, a/2, b/2)) integrate (expr1s, (s, sa, sb)) #integrate(expr1th, (th, ta, tb)) quad (lamb1th, [ta, tb]) quad (lamb1s, [sa, sb]) quad (lamb1x, [a, b]) quad (lamb1x, [a, b]) differenc (Expr4th, (th, ta, tb)) differenc (Expr4s, (s, sa, sb)) differenc (Expr4x, (x, a, b)) integrate (expr1x, (x, 0, 1)) # 7: # (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf" 4) # Obs: revisão ok. # integrate( exp(x) - 1, (x, 1, 2)) integrate(-(exp(x) - 1), (x, -1, 1)) integrate( exp(x) - 1, (x, -1, 2)) ##### # # Converting equations on foci (with sqrts) to polynomials # 2016jul27 # ##### # «foci» (to ".foci") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # Consequences of sqrt(A) + sqrt(B) = C: # (gaq 52) A = 25 B = 25 C = 10 ( sqrt(A) + sqrt(B), C) ((sqrt(A) + sqrt(B))**2, C**2) (A + 2*sqrt(A*B) + B, C**2) ( 2*sqrt(A*B), C**2 - A - B) ( (2*sqrt(A*B))**2, (C**2 - A - B)**2) (4*A*B, (C**2 - A - B)**2) (4*A*B, C**4 - 2*A*C**2 - 2*B*C**2 + A**2 + 2*A*B + B**2) (0, C**4 - 2*A*C**2 - 2*B*C**2 + A**2 - 2*A*B + B**2) (0, C**2 * (C**2 - 2*A - 2*B) + (A-B)**2) (0, C**2 * (C**2 - 2*(A+B)) + (A-B)**2) A = (x-3)**2 + y**2 B = (x+3)**2 + y**2 C = 10 ( C**2 * (C**2 - 2*(A+B)) + (A-B)**2).expand() ((A+B).expand(), (A-B).expand(), ((A-B)**2).expand()) # Consequences of sqrt(A) - sqrt(B) = C: # (gaq 54) # A = 100 B = 64 C = 2 ( sqrt(A) - sqrt(B), C) ((sqrt(A) - sqrt(B))**2, C**2) (A - 2*sqrt(A*B) + B, C**2) ( -2*sqrt(A*B), C**2 - A - B) ( (-2*sqrt(A*B))**2, (C**2 - A - B)**2) (4*A*B, (C**2 - A - B)**2) (4*A*B, C**4 - 2*A*C**2 - 2*B*C**2 + A**2 + 2*A*B + B**2) (0, C**4 - 2*A*C**2 - 2*B*C**2 + A**2 - 2*A*B + B**2) (0, C**2 * (C**2 - 2*A - 2*B) + (A-B)**2) (0, C**2 * (C**2 - 2*(A+B)) + (A-B)**2) A = (x-3)**2 + y**2 B = (x+3)**2 + y**2 C = 2 ( C**2 * (C**2 - 2*(A+B)) + (A-B)**2).expand() ((A+B).expand(), (A-B).expand(), ((A-B)**2).expand()) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # http://docs.sympy.org/0.7.2/tutorial.html#algebraic-equations solve(t + 1/t - 2, t) solve(t + 1/t - 3, t) solve(t + 1/t - 4, t) solve(t + 1/t - 5, t) solve(t + 1/t - x, t) solve(t + 1/t - 3, t)[1] ##### # # Lista 6 da Bel, problema 11: interseção de parábolas # 2016jul27 # ##### # «bel-6-11» (to ".bel-6-11") # (gal6 2) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) pol4 = x**4 - 6 * x**2 - x + 10 factor(pol4) solve([y == x**2, x == (y-3)**2 +1]) ##### # # 2016.1: GA, P2 # 2016jul27 # ##### # «2016.1-GA-P2» (to ".2016.1-GA-P2") # (find-es "sympy" "tut-linear-alg") # (find-es "sympy" "matrices") # (find-sympytutfile "matrices.rst" "transpose") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") proj2((3, 1), (x, y)) # Questão 2a # (find-pdf-page "~/LATEX/2016-1-GA-P2.pdf") # F = M([R(1,2), 0]) dF2 = lambda P: norm22(M([P[0], P[1]]) - F) # d(P,F)^2 dd2 = lambda P: (P[0]-2)**2 # d(P,d)^2 ddd = lambda P: dd2(P) - 4*dF2(P) # d(P,d)^2 - 4*d(P,F)^2 dddd = lambda P: (dd2(P), 4*dF2(P)) # (d(P,d)^2, 4*d(P,F)^2) dd2((x,y))**2 dF2((x,y)) dddd((x,y)) dddd((-1,0)), dddd((1,0)) dddd((0,y)), dddd((0,-y)) ddd((0,y)), ddd((0,-y)) solve(ddd((0,y)), y) myy = solve(ddd((0,y)), y)[1] myy = sqrt(3) / 2 myy dddd((0,myy)), dddd((0,-myy)) # 2b # F = M([0, 0]) dF2 = lambda P: norm22(M([P[0], P[1]]) - F) # d(P,F)^2 dd2 = lambda P: (P[0]-3)**2 # d(P,d)^2 ddd = lambda P: dd2(P) - 4*dF2(P) # d(P,d)^2 - 4*d(P,F)^2 dddd = lambda P: (dd2(P), 4*dF2(P)) # (d(P,d)^2, 4*d(P,F)^2) solve(ddd((x,0)), x) solve(ddd((-1,y)), y) myy = sqrt(3) dddd((-3,0)), dddd((1,0)) dddd((-1,myy)), dddd((-1,-myy)) # Questão 4 # (find-pdf-page "~/LATEX/2016-1-GA-P2.pdf") # piz = lambda x, y: 10 + 2*x - 3*y # z such that (x,y,z) in pi pi0z = lambda x, y: 2*x - 3*y # z such that \vec(x,y,z) || pi pixyz = lambda x, y, z: piz(x, y) - z # zero if (x,y,z) in pi piP = lambda P: pixyz(P[0], P[1], P[2]) # zero if P in pi pin = M([2, -3, -1]) # a vector that is normal to pi A1, v1 = M([2, 1, piz(2,1)]), M([1, 2, pi0z(1, 2)]) A2, v2 = M([1, 2, piz(1,2)]), M([3, -1, pi0z(3,-1)]) A3, v3 = M([2, 3, piz(2,3)]), pin r1t = lambda t: A1 + t*v1 r2t = lambda t: A2 + t*v2 r3t = lambda t: A3 + t*v3 P = r3t(1) # ponto P do enunciado: P=(4,0,4) A4, v4 = P, pin r4t = lambda t: P + t*pin r4t(t) piP(r4t(t)) solve(piP(r4t(t)), t) r1t(t) # parametrização da reta r_1 : (2+t, 1+2t, 11-4t) r2t(t) # parametrização da reta r_2 : (1+3t, 2-t, 6+9t) (r1t(0), r1t(1)-r1t(0)) # parametrização da reta r_1 : (2, 1, 11) + t(1, 2, -4) (r2t(0), r2t(1)-r2t(0)) # parametrização da reta r_2 : (1, 2, 6) + t(3, -1, 9) pixyz(x, y, z) # equação do plano pi: 2x - 3y - z + 10 = 0 r1t(0), r1t(1), piP(r1t(0)), piP(r1t(1)) r2t(0), r2t(1), piP(r2t(0)), piP(r2t(1)) st(t) st(1) # ponto P: (4, 0, 4) st(0), piP(st(0)) # ponto P': (2, 3, 5) st(-1) # ponto P'': (0, 6, 6) # Transferir pra outro lugar: t1, t2 = symbols('t1 t2') # solve(r1t(t1) - r2t(t2)) solve(r1t(t1) - r2t(t2), [t1, t2]) sols = solve(r1t(t1) - r2t(t2), [t1, t2]) # where r1 meets r2 # r1t(t1), r2t(t2) r1t(t1) -r2t(t2) vprod(r1t(t1)-r2t(t2), pin) sols = solve(vprod(r1t(t1)-r2t(t2), pin), [t1, t2]) # where r1 is closer to r2 # sols type(sols) sols[t1], sols[t2] B1, B2 = r1t(sols[t1]), r2t(sols[t2]) B1, B2 ##### # # 2016.1: C2 P2 # 2016aug01 # #### # «2016.1-C2-P2» (to ".2016.1-C2-P2") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # Questão 1 # (find-pdf-page "~/LATEX/2016-1-C2-P2.pdf") D = symbols("D") ((2+3*I) * (2-3*I)).expand() a, b = -2, 0 a, b = -2, 3 ((D - (a+b*I)) * (D - (a-b*I))).expand() a, b = 3, 4 ((D - (a+b*I)) * (D - (a-b*I))).expand() # Questão 3 eq = f(x).diff(x) - f(x) + x eq dsolve(eq, f(x)) # Questão 3 # (find-pdf-page "~/LATEX/2016-1-C2-P2.pdf") # (find-es "sympy" "dsolve") # (find-es "sympy" "integration") F = 2*x + 3*x*y**2 - y**3 Fx = F.diff(x) Fy = F.diff(y) Fy, Fx eq = Fy.subs(y, f(x)) * f(x).diff(x) + Fx eq Fx = 2 + 3*f(x)**2 Fy = 6*x*f(x) - 2*f(x) eq = Fy * f(x).diff(x) + Fx eq dsolve(eq, f(x)) dsolve(eq, f(x), hint="1st_exact") x0, x1, y0, y1 = symbols('x0 x1 y0 y1') Fx.subs(f(x), 0) integrate(Fx.subs(f(x), 0), (x, 0, x1)) ##### # # 2016.1: GA VR # 2016aug01 # ##### # «2016.1-GA-VR» (to ".2016.1-GA-VR") # (find-angg "LATEX/2016-1-GA-VR.tex") # (find-pdf-page "~/LATEX/2016-1-GA-VR.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") V = lambda a,b,c: M([a,b,c]) # Questão 1 pin = V(1,1,1) eqpi = lambda P: sprod3(pin, P) - 4 A = V(3,3,3) B = lambda t: V(2,3,4) + t*V(2,0,3) B(2) r2 = lambda u: A + u*(B(2)-A) r2(0) r2(1) eqpi(r2(t)) eqpi(r2(-R(1,2))) r2(-R(1,2)) # Questão 4 P = V(4,4,4) nn = V(1,2,4) eqpi = lambda P: sprod3(P, nn) - 4 sol = solve(eqpi(P + t*nn), t) t1 = sol[0] P1 = P + t1*nn t1, norm3(P1 - P), P1 # Questão 4 eq1 = x/3 - (y-2)**2 eq2 = eq1.subs(y, 2*x) eq1, eq2 sols = solve(eq2, x) x1, x2 = sols[0], sols[1] y1, y2 = 2*x1, 2*x2 eq1.subs(x, x1).subs(y, y1) eq1.subs(x, x2).subs(y, y2) ((x1, y1), (x2, y2)) ##### # # 2016.1: C2 VR # 2016aug01 # ##### # «2016.1-C2-VR» (to ".2016.1-C2-VR") # (find-angg "LATEX/2016-1-C2-VR.tex") # (find-pdf-page "~/LATEX/2016-1-C2-VR.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") # Questão 1a: expr = x**4 * ln(x) expr Expr = integrate(expr, x, manual=True) Expr integrate(expr, (x, 2, 3)) differenc(Expr, (x, 2, 3)) # Questão 1b: expr = x**3 * sqrt(1 - x**2) expr Expr = integrate(expr, x, manual=True) Expr Expr2 = (3 * x**4 - x**2 - 2) / 15 * sqrt(1 - x**2) Expr2 Expr.equals(Expr2) # Questão 1c: apart (x**2 / (x**2 - x - 6), x) integrate(x**2 / (x**2 - x - 6), x) # Questão 2: # (find-es "sympy" "dsolve") # (find-es "sympy" "Eq") f = Function('f') eq = f(x).diff(x, x) - f(x).diff(x) + 6*f(x) eq = f(x).diff(x, x) - f(x).diff(x) - 6*f(x) eq dsolve(eq) `dsolve(eq)` a, b = symbols('a b') g = a*exp(-2*x) + b*exp(3*x) gg = g.diff(x) g0 = g.subs(x, 0) g1 = g.subs(x, 1) g0, g1 solve((g0, g1-1), [a, b]) # Questão 3: f = Function('f') eq = f(x).diff(x) + 2*(x+3)/f(x) eq dsolve(eq, f(x)) sol = sqrt(2) * sqrt(a - (x+3)**2).expand() sol expr = sol.diff(x) + 2*(x+3)/sol expr expr.subs(a, 20) expr.subs(a, 20).equals(0) # (find-sympytutfile "gotchas.rst" "a.equals(b)") sol.subs(x, 0) sol.subs(x, 0).subs(a, 10) sol.subs(x, 0).subs(a, 59) sol .subs(a, 59) sol .subs(a, 59).subs(x, 0) ##### # # 2016.1: C2 VS # 2016aug08 # ##### # «2016.1-C2-VS» (to ".2016.1-C2-VS") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") # Questão 1a apart (x**3 / (x**2 - 4), x) integrate(x**3 / (x**2 - 4), x, manual=True) expr1 = x**3 / (x**2 - 4) expr2 = apart(expr1) integrate(expr1, x) integrate(expr2, x) # Questão 1b expr1 = 1 / (x * sqrt(x**2 - 1)) integrate(expr1, x, manual=True) # Questão 1c integrate(x**2 - 1, x) integrate(x**2 - 1, (x, -2, -1)) integrate(1 - x**2, (x, -1, 1)) integrate(x**2 - 1, (x, 1, 2)) # Questão 2a: D = symbols("D") a, b = -1, 2 ((D - (a+b*I)) * (D - (a-b*I))).expand() f = Function('f') eq = f(x).diff(x,x) + 2*f(x).diff(x) + 5*f(x) eq dsolve(eq, f(x)) # Questão 2b: a, b = symbols("a b") f1 = cos(2*x) * exp(-x) f2 = sin(2*x) * exp(-x) f3 = a * f1 + b * f2 f3 cond1 = f3 .subs(x, 0) cond2 = f3.diff(x).subs(x, 0) - 1 solve((cond1, cond2), (a, b)) ##### # # 2016.2: GA P1 # 2016nov16 / 2016nov21 # ##### # «2016.2-GA-P1» (to ".2016.2-GA-P1") # (find-pdf-page "~/LATEX/2016-2-GA-P1.pdf") # (find-es "sympy" "tut-linear-alg") # (find-es "sympy" "solve") # (find-LATEX "2016-2-GA-algebra.tex" "parametrizadas") # (gaap 14) # (find-LATEXfile "2016-2-GA-P1.tex") # (find-pdf-page "~/LATEX/2016-2-GA-P1.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") from sympy import * t,u = symbols('t u') # Questão 2b: # (find-pdf-page "~/LATEX/2016-2-GA-P1.pdf") # (find-es "sympy" "Eq") rt = M([1,2]) + t*M([3,4]) # [3*t+1, 4*t+2] rt eq_xt = Eq(x, rt[0]) eq_xt eq_tx = Eq(t, solve(eq_xt, t)[0]) eq_tx eq_tx.rhs rx = rt.subs(t, eq_tx.rhs) rx eq_ryx = Eq(y, rx[1]) eq_ryx a = -R(3,4) eq_syx = Eq(y, 5 + a*x) eq_syx sol_xy = solve([eq_ryx, eq_syx], [x,y]) sol_xy # (x,y) = (52/25, 86/25) = (2.08,3.44) eqs = [Eq(x, rt[0]), Eq(y, rt[1]), Eq(y, 5 + a*x)] eqs sols = solve(eqs, [x, y, t]) # (x,y) = (52/25, 86/25), t = 9/25 sols eq_x = Eq(eq_ryx.rhs, eq_syx.rhs) eq_x solx = solve(eq_x)[0] solx eq_ryx.subs(x, solx) eq_syx.subs(x, solx) soly = solve(syx.subs(x, solx), y)[0] soly solx, soly # (x,y) = (52/25, 86/25) solve(ryx, x) solve(ryx, y) eq_xt eq_tx Eq(eq_xt.lhs - eq_tx.lhs, eq_xt.rhs - eq_tx.rhs) # Garbage: a = symbols('a') eq1 = Eq(2*x + 3*y + 4*a, 0) eq2 = eq1.subs(x, 10).subs(y, 20) eq1 eq2 solve(eq2, a)[0] # Questão 4: # (find-pdf-page "~/LATEX/2016-2-GA-P1.pdf") # (find-es "sympy" "Eq") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") a = R(3,4) den = drPdenom(a) # sqrt(1+a**2) --> 5/4 ry = lambda x: 1+a*x # r(x,ry(x)) always belongs to r dxyr = lambda x,y: (y-ry(x))/den # d((x,y),r) (without the "| |") st = lambda t: V(0,1) + t*V(2,1) # st(t) always belongs to s dtr = lambda t: dxyr(st(t)[0], st(t)[1]) # d(st(t),r) (without the "| |") dxyr(0,3) # 4a: d((0,3),r) == 8/5 dxyr(R(5,3),3) # 4a: d((0,3),r) == 8/5 dtr(0) dtr(1) dtr(t) solt1 = solve(Eq(dtr(t), 1), t)[0] # t such that d(st(t),r) == 1 solt2 = solve(Eq(dtr(t), -1), t)[0] # t such that d(st(t),r) == -1 solt1, solt2 st(solt1) # 4b: P1 = (-5,-3/2) st(solt2) # P2 = ( 5, 7/2) # dxyr(0,y) soly1 = solve(Eq(dxyr(0,y), 1), y)[0] soly2 = solve(Eq(dxyr(0,y), -1), y)[0] soly1 soly2 Eq(y, soly1 + R(3,4)*x) # 4c: r': y = (3/4)*x + 9/4 Eq(y, soly2 + R(3,4)*x) # r'': y = (3/4)*x - 1/4 # Questão 5: # (find-pdf-page "~/LATEX/2016-2-GA-P1.pdf") # (find-es "sympy" "Eq") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") makepolyC = lambda x0,y0,R: (x-x0)**2 + (y-y0)**2 - R**2 polyC = makepolyC(0, 5, 5) polyCC = makepolyC(1, 0, 1) polyr = (polyC - polyCC).expand() polyC polyCC polyr eqx = polyC.subs(y, solve(polyr, y)[0]) eqx solve(eqx, x) solx = solve(eqx, x)[1] polyy = polyr.subs(x, solx) solx polyy soly = solve(polyy, y)[0] soly sols = solve([polyC, polyCC], [x,y]) # [(0, 0), (25/13, 5/13)] sols ##### # # 2016.2: C2 P1 # 2016nov16 / 2016nov21 # ##### # «2016.2-C2-P1» (to ".2016.2-C2-P1") # (find-pdf-page "~/LATEX/2016-2-C2-P1.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") # Questão 1: diff(atan(x), x) # Questão 2: F = x**-4 f = x**-3 / -3 differenc(f, (x, -1, R(-1,10))) differenc(f, (x, -1, R(-1,100))) differenc(f, (x, -1, R(-1,1000))) integrate(F, (x, -1, R(-1,10))) integrate(F, (x, -1, R(-1,100))) integrate(F, (x, -1, R(-1,1000))) # Questão 3: L = 1 / (1-x) R = 1 / (1+x) integrate(L, x) integrate(R, x) integrate(L, (x, -1, 0)) integrate(R, (x, 0, 2)) integrate(L, (x, -1, 0)) + integrate(R, (x, 0, 2)) # Questão 4: f = x**2 / (x**2 - 4*x - 5) apart(f, x) integrate(f, x) # Questão 5a: f = 1 / (1 + x**2) integrate(f, x) # Questão 5b: f = x**2 / (1 - 4*x**2) integrate(f, x) f = x**2 / (1 - x**2) integrate(f, x) # Questão 6: f = x * sin(4*x + 5) integrate(f, x) ##### # # 2016.2: C2 P2 # 2017jan08 # ##### # «2016.2-C2-P2» (to ".2016.2-C2-P2") # (find-pdf-page "~/LATEX/2016-2-C2-P2.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") # Questão 2 f = Function('f') eq = f(x).diff(x) - sin(2*x) / sin(5*f(x)) eq dsolve(eq, f(x)) h = R(5,2) * cos(2*x) f = R(1,5) * acos(h) f f.diff(x) f.diff(x) - sin(2*x) / sin(5*f) sin(5*f) sin(2*x) / sin(5*f) # Questão 3 z = ln(x*y**2+3) z.diff(x) z.diff(y) zx = (x*y**2) / (x*y**2+3) + ln(x*y**2+3) - y*sin(x) zx zy = (2*x**2*y) / (x*y**2+3) + ln(x*y**2+3) + cos(x) zy zx.diff(y) zy.diff(x) zx.diff(y) - zy.diff(x) z = integrate(zx, x) z z.diff(y) integrate(zy, y) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") f = x**4 - 3 * x**2 f.diff() f.diff(x) f.diff(x,x) f.diff(x,x,x) f.diff(x,x,x,x) f.diff() .subs(x, 1) f.diff(x) .subs(x, 1) f.diff(x,x) .subs(x, 1) f.diff(x,x,x) .subs(x, 1) f.diff(x,x,x,x).subs(x, 1) eq = f(x).diff(x,x) + 2*f(x).diff(x) + 5*f(x) 2.5 * 2.5 (2 * 2)**3 (2.5 * 2.5)**3 * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") together(2/(x+1) + 3/(x-2) - 4/(x+3)) together(2/(x+1) + 3/(x-2) - 4/(x+3)).expand() * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") expr = cos(x) + (1 + (sin(x)**2)) integrate(expr, x, manual=True) integrate(1 / sin(x), x, manual=True) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") integrate((2*x+3) * sin(4*x+5), x, manual=True) integrate(x * sin(4*x+5), x, manual=True) ##### # # 2017.1: GA P1 # 2017jun29 # ##### # «2017.1-GA-P1» (to ".2017.1-GA-P1") # (find-pdf-page "~/LATEX/2017-1-GA-P1.pdf") # (find-es "sympy" "tut-linear-alg") # (find-es "sympy" "solve") # (find-LATEX "2016-2-GA-algebra.tex" "parametrizadas") # (gaap 14) # (find-LATEXfile "2016-2-GA-P1.tex") # (find-pdf-page "~/LATEX/2016-2-GA-P1.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") eq1 = R(4,5) * abs(4 - R(3,4)*x - y) - 1 eq2 = y - 2*x solve([eq1, eq2]) # (1, 2), (21/11, 42/11) from sympy import * t,u = symbols('t u') ##### # # 2017.1: GA P2 # 2017jul16 # ##### # «2017.1-GA-P2» (to ".2017.1-GA-P2") # (find-LATEX "2017-1-GA-P2.tex") # (find-pdf-page "~/LATEX/2017-1-GA-P2.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") mym = M([[0, 1, -2], [1, 0, -2], [1, 1, -2]]) mym det(mym) # Questão 1 # (find-pdf-page "~/LATEX/2017-1-GA-P2.pdf") u = y - x/2 v = y + x/2 uu = V2(-1, .5) vv = V2( 1, .5) solve(V2(u,v)) solve(V2(u,v) - V(1,0)) solve(V2(u,v) - V(0,1)) uvtoxy = lambda u,v: u*uu + v*vv uvtoxy(4,-2) # -6,1 uvtoxy(1,-1) # -2,0 uvtoxy(0, 0) # 0,0 uvtoxy(1, 1) # 0,1 uvtoxy(4, 2) # -2,3 (u - v**2).subs(x, -2).subs(y, 3) (u - v**2).subs(x, -2).subs(y, 3) # Questão 3 A = (x-1)**2 + y**2 B = (x+1)**2 + y**2 C = 4 S = sqrt(A) + sqrt(B) - C S D = C**2 * (C**2 - 2*(A+B)) + (A-B)**2 D = D.expand() D D/192 S S.subs(y,0) S.subs(y,0).subs(x,2) S.subs(y,0).subs(x,-2) S.subs(x,0).subs(y,sqrt(3)) D.subs(y,0) D.subs(y,0).subs(x,2) D.subs(x,0).subs(y,sqrt(3)) D0 = C**2 - A - B - 2*sqrt(A*B) D = D0 # A,B,C = symbols('A B C') D/192 solve(D.subs(y,0), x) ##### # # 2017.1: GA VR # 2017jul18 # ##### # «2017.1-GA-VR» (to ".2017.1-GA-VR") # (find-LATEX "2017-1-GA-VR.tex") # (find-pdf-page "~/LATEX/2017-1-GA-VR.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") # Questao 3: t, aa = symbols('t, aa') nn, A = V3(2,2,1), V3(0,0,4) r0, rv = V3(1,2,3), V3(2,1,0) s0, sv = V3(0,0,0), nn r = lambda t: r0+t*rv s = lambda t: s0+t*sv # Questao 3a: F = inter_plane_line(plane_from_nn_A(nn, A), r) F # (-2/3, 7/6, 3) # Questao 3c: H = inter_plane_line(plane_from_nn_A(nn, A), s) H # (8/9, 8/9, 4/9) # Questao 3d: dist_plane_P(nn, A, V3(0,0,0)) # -4/3 # Questao 3e: norm3(H) # 4/3 # Questao 3f: di = dist_plane_P(nn, A, V3(0,0,aa)) di # aa/3 - 4/3 solve(di-1, aa)[0] # 7 solve(di+1, aa)[0] # 1 dist_plane_P(nn, A, V3(0,0,7)) # 1 dist_plane_P(nn, A, V3(0,0,1)) # -1 # Questao 3g: inter_plane_line(plane_from_nn_A(nn, V3(0,0,7)), r) # (1/3, 5/3, 3) inter_plane_line(plane_from_nn_A(nn, V3(0,0,1)), r) # (-5/3, 2/3, 3) # Questao 3h: dist_plane_P(nn, A, V3(0,0,10)) # 2 dist_plane_P(nn, A, V3(0,0,-2)) # -2 inter_plane_line(plane_from_nn_A(nn, V3(0,0,10)), r) # (4/3, 13/6, 3) inter_plane_line(plane_from_nn_A(nn, V3(0,0,-2)), r) # (-8/3, 1/6, 3) ##### # # 2017.2: GA VS # 2018jan19 # ##### # «2017.2-GA-VS» (to ".2017.2-GA-VS") # (find-LATEX "2017-2-GA-VS.tex") # (find-pdf-page "~/LATEX/2017-2-GA-VS.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") # Questao 1: A, B, C, D = V3(0, 2, 2), V3(3, 3, 0), V3(4, 0, 4), V3(0, 4, 2) AB = B - A AC = C - A pin = - vprod(AB, AC) / 2 # pi_normal: (1, 7, 5) pid = sprod3(pin, A) # pi_d = 24; a equação de pi é: 1x + 7y + 5z = 24 pieq = lambda P: sprod3(pin, P) - pid rr = lambda t: D + t*pin E = inter_plane_line(pieq, rr) # E = (-14/75, 202/75, 48/75) r = lambda t: D + t*pin F = closest_line_P3(r, D) pieq(V3(x, y, z)) pieq(A), pieq(B), pieq(C) r(t) E F pieq(E), vprod(E-D, pin) # E in pi, DE // nn vprod(F-D, pin), sprod3(F-D, pin) # DF _|_ nn, DF // nn D, F pid # (1, 7, 5) A # sprod3(nn, A) # Questao 3: t, aa = symbols('t, aa') nn, A = V3(2,2,1), V3(0,0,4) r0, rv = V3(1,2,3), V3(2,1,0) s0, sv = V3(0,0,0), nn r = lambda t: r0+t*rv s = lambda t: s0+t*sv # Questao 3a: F = inter_plane_line(plane_from_nn_A(nn, A), r) F # (-2/3, 7/6, 3) # Questao 3c: H = inter_plane_line(plane_from_nn_A(nn, A), s) H # (8/9, 8/9, 4/9) # Questao 3d: dist_plane_P(nn, A, V3(0,0,0)) # -4/3 # Questao 3e: norm3(H) # 4/3 # Questao 3f: di = dist_plane_P(nn, A, V3(0,0,aa)) di # aa/3 - 4/3 solve(di-1, aa)[0] # 7 solve(di+1, aa)[0] # 1 dist_plane_P(nn, A, V3(0,0,7)) # 1 dist_plane_P(nn, A, V3(0,0,1)) # -1 # Questao 3g: inter_plane_line(plane_from_nn_A(nn, V3(0,0,7)), r) # (1/3, 5/3, 3) inter_plane_line(plane_from_nn_A(nn, V3(0,0,1)), r) # (-5/3, 2/3, 3) # Questao 3h: dist_plane_P(nn, A, V3(0,0,10)) # 2 dist_plane_P(nn, A, V3(0,0,-2)) # -2 inter_plane_line(plane_from_nn_A(nn, V3(0,0,10)), r) # (4/3, 13/6, 3) inter_plane_line(plane_from_nn_A(nn, V3(0,0,-2)), r) # (-8/3, 1/6, 3) ##### # # 2017.1: C2 P1 # 2017jul17 # ##### # «2017.1-C2-P1» (to ".2017.1-C2-P1") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") ee = symbols('ee') # Questão 1: diff(atan(x), x) # Questão 2: f = x**(-4) F = integrate(f, x) G = integrate(f, (x, -1, -ee)) + integrate(f, (x, ee, 1)) G # Questão 3: fl = 1/(3-x) fr = 1/(3+x) integrate(fl, (x, -1, 0)) integrate(fr, (x, 0, 2)) integrate(fl, (x, -1, 0)) + integrate(fr, (x, 0, 2)) # Questão 4: f = x**2 / (x**2 + 4*x - 5) apart(f, x) F = integrate(f, x) F # Questão 5: f = x / (x**2 + 1) F = integrate(f, x) F # Questão 6: f = (cos(x)**4) F = integrate(f, x) F ##### # # 2017.1: C2 P2 # 2017jul18 # ##### # «2017.1-C2-P2» (to ".2017.1-C2-P2") # (find-angg "LATEX/2017-1-C2-P2.tex") # (find-pdf-page "~/LATEX/2017-1-C2-P2.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # (find-es "sympy" "tut-solve") # Questao 1: a,b = symbols("a,b") f = Function('f') eq = f(x).diff(x,x) - 5*f(x).diff(x) + 6*f(x) dsolve(eq, f(x)) f1 = exp(2*x) f2 = exp(3*x) sol = a*f1 + b*f2 sol cond0 = sol.subs(x, 0) cond1 = sol.diff(x).subs(x, 0) cond0 cond1 solve([cond0 - 1, cond1 - 0], [a, b]) solve([cond0 - 0, cond1 - 1], [a, b]) solve([cond0 - 2, cond1 - 3], [a, b]) # Questao 2: # (find-es "sympy" "Function") # (find-es "sympy" "Symbol") f1,f2,f3,f4 = symbols('f1,f2,f3,f4', cls=Function) D = symbols("D") a, b = -2, 3 ((D - (a+b*I)) * (D - (a-b*I))) ((D - (a+b*I)) * (D - (a-b*I))).expand() f = Function('f') eq = f(x).diff(x,x) + 4*f(x).diff(x) + 13*f(x) dsolve(eq, f(x)) f3 = cos(3*x) * exp(-2*x) f4 = sin(3*x) * exp(-2*x) f3 = Lambda(x, cos(3*x) * exp(-2*x)) f4 = Lambda(x, sin(3*x) * exp(-2*x)) f3 2*f3 Lambda(x, 2*f3(x)) f1.diff(x) eq.subs(f, sin) eq.subs(f, sin).expand() eq.subs(f, f3).expand() f = Lambda(x, x**2) # Questao 3: # (find-es "sympy" "Eq") C1 = symbols("C1") eq = f(x).diff(x) - x*exp(-f(x)) eq dsolve(eq, f(x)) f1 = dsolve(eq, f(x)).rhs f1 c = solve(f1.subs(x, 3) - 4)[0] c f2 = f1.subs(C1, c) f2 f2.subs(x, 3) f1.subs(C1, 9) f1.subs(x, 3) ##### # # 2017.1: C2 VS # 2017jul31 # ##### # «2017.1-C2-VS» (to ".2017.1-C2-VS") # (find-angg "LATEX/2017-1-C2-VS.tex") # (find-pdf-page "~/LATEX/2017-1-C2-VS.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") a,b = symbols('a,b') # Questão 1: f = x * sqrt(1 - x**2) F = integrate(f, x) f F # Questão 3: f = x * sin(a*x + b) F = integrate(f, x) f F # Questão 4: f = x / (x**2 + 1) F = integrate(f, x) f F ##### # # 2017.2: C2 P2 # 2017dez14 # ##### # «2017.2-C2-P2» (to ".2017.2-C2-P2") # (find-angg "LATEX/2017-1-C2-P2.tex") # (find-pdf-page "~/LATEX/2017-2-C2-P2.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # (find-es "sympy" "tut-solve") # Questao 1: a,b = symbols("a,b") f = Function('f') eq = f(x).diff(x,x) + 4*f(x).diff(x) - 12*f(x) dsolve(eq, f(x)) f1 = exp(-6*x) f2 = exp( 2*x) sol = a*f1 + b*f2 sol cond0 = sol.subs(x, 0) cond1 = sol.diff(x).subs(x, 0) cond0 cond1 solve([cond0 - 1, cond1 - 0], [a, b]) solve([cond0 - 0, cond1 - 1], [a, b]) solve([cond0 - 4, cond1 - 5], [a, b]) # Questao 2: # (find-es "sympy" "Function") # (find-es "sympy" "Symbol") f1,f2,f3,f4 = symbols('f1,f2,f3,f4', cls=Function) D = symbols("D") a, b = -3, 2 ((D - (a+b*I)) * (D - (a-b*I))) ((D - (a+b*I)) * (D - (a-b*I))).expand() f = Function('f') eq = f(x).diff(x,x) + 4*f(x).diff(x) + 13*f(x) dsolve(eq, f(x)) f3 = cos(3*x) * exp(-2*x) f4 = sin(3*x) * exp(-2*x) f3 = Lambda(x, cos(3*x) * exp(-2*x)) f4 = Lambda(x, sin(3*x) * exp(-2*x)) f3 2*f3 Lambda(x, 2*f3(x)) f1.diff(x) eq.subs(f, sin) eq.subs(f, sin).expand() eq.subs(f, f3).expand() f = Lambda(x, x**2) # Questao 3: # (find-es "sympy" "Eq") C1 = symbols("C1") a,b = symbols("a,b") eq = f(x).diff(x) - x**2 * exp(-3*f(x)) eq dsolve(eq, f(x)) dsolve(eq, f(x))[0] f1 = dsolve(eq, f(x))[0].rhs f1 c = solve(f1.subs(x, 3) - 4)[0] c c = solve(f1.subs(x, a) - b)[0] c f2 = f1.subs(C1, c) f2 f2.subs(x, 3) f1.subs(C1, 9) f1.subs(x, 3) ##### # # 2018.2-C2-P1 # 2018dec08 # ##### # «2018.2-C2-P1» (to ".2018.2-C2-P1") # (find-LATEX "2018-2-C2-P1.tex" "gab-2") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) s,u,z = symbols("s,u,z") # Questao 2 # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 1) # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 2) f = 1 / ((s**2 - 1)**2) fa = apart(f, s) fa Fa = integrate(fa, s) Fa integrate(1/(s+1)**2, s) integrate(1/(s-1)**2, s) # Questao 3 # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 1) # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 3) f = x**3 / (x**2 + 7*x + 12) f g = x - 7 + (37*x + 84) / ((x+3)*(x+4)) g apart(f) apart(g) integrate(f, x) # Questao 4 # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 1) # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 3) integrate((u+3)**4 / u**2, u) # Questao 5 # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 1) # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 3) integrate(log(x), x) integrate(x*log(x), x) ##### # # 2018.2-C2-P2 # 2018dec12 # ##### # «2018.2-C2-P2» (to ".2018.2-C2-P2") # (find-LATEX "2018-2-C2-P2.tex") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # «2018.2-C2-P2-q2» (to ".2018.2-C2-P2-q2") a,b = symbols("a,b") F = exp(3*x) C = cos(4*x) S = sin(4*x) FC = F*C FC1 = diff(F*C, x) FC2 = diff(F*C, x, x) FC FC1 FC2 diff(a*F*C + b*F*S, x) diff(a*F*C + b*F*S, x) .subs(a, 1).subs(b, 0) diff(a*F*C + b*F*S, x, x).subs(a, 1).subs(b, 0) # «2018.2-C2-P2-q4» (to ".2018.2-C2-P2-q4") s,u,z = symbols("s,u,z") s,u,z,dx,dy = symbols("s,u,z,dx,dy") f = Function('f') G = 2*x*y**3 H = 3 * (x**2 + 3) * y**2 diff(G, y) diff(H, x) F = y**3 * (x**2 + 3) F diff(F, x) diff(F, x) - G diff(F, y) (diff(F, y) - H).subs(x, 42) diff(F, x, y) diff(F, y, x) myeq = diff(F, x)*dx + diff(F, y)*dy myeq myeq = diff(F, x) + diff(F, y)*f(x).diff(x) myeq myeq2 = myeq.subs(y, f(x)) myeq2 dsolve(myeq2, f(x)) ##### # # 2018.2-C2-VS # 2018dec19 # ##### # «2018.2-C2-VS» (to ".2018.2-C2-VS") # (find-LATEX "2018-2-C2-VS.tex") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) t,th = symbols("t,th") C = cos(th) S = sin(th) f = C**3 * S integrate(C**3 * S, th) integrate(C**3 * S**3, th) E,Einv = symbols("E,Einv") C = (E + Einv)/2 S = (E - Einv)/(2*I) f = C**3 * S**3 expand(f) zz = sqrt(t**2 + 1) integrate( zz**-1, t) integrate(t * zz**-1, t) integrate(t**2 * zz**-1, t) integrate(t**-1 * zz**-1, t) f = 1 / (sqrt(4*x**2 + 9)) integrate(f, x) ##### # # 2019.1-C2-P1 # 2019jun04 # ##### # «2019.1-C2-P1» (to ".2019.1-C2-P1") # (find-LATEX "2019-1-C2-P1.tex" "gab-2") # (find-xpdfpage "~/LATEX/2019-1-C2-P1.pdf") # (find-fline "~/2019.1-C2/" "20190623_c2_p1") # (xz "~/2019.1-C2/20190623_c2_p1_gab_q1.jpg") # (xz "~/2019.1-C2/20190623_c2_p1_gab_q2.jpg") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") s,u,z = symbols("s,u,z") t,th = symbols("t,th") E,Einv = symbols("E,Einv") # Questao 1 # (c2p1p) Sn = lambda n: (E**n - E**-n) / (2*I) Cn = lambda n: (E**n + E**-n) / 2 expr = Sn(3)**2 * Cn(4)**2 expr expr.expand() expr = Cn(14)/-8 + Cn(8)/4 + Cn(6)/4 + Cn(2)/-8 - R(1,4) expr # Sn = lambda n: sin(n*th) Cn = lambda n: cos(n*th) expr = Cn(14)/-8 + Cn(8)/4 + Cn(6)/4 + Cn(2)/-8 - R(1,4) integrate(expr, th) # Questao 2 # (xz "~/2019.1-C2/20190623_c2_p1_gab_q2.jpg") expr = x * ln(2*x + 3) integrate(expr, x) # Questao 3 # (find-es "sympy" "trig-subst-questions") S = sqrt(1 - x**2) T = sqrt(x**2 + 1) Z = sqrt(x**2 - 1) integrate(x**3 * S**-3, x) integrate(x**3 * S**-2, x) integrate(x**3 * S**-1, x) integrate(x**3 * S** 1, x) integrate(x**3 * S** 2, x) integrate(x**3 * S** 3, x) integrate(x**2 * S**-3, x) integrate(x**2 * S**-2, x) integrate(x**2 * S**-1, x) # bom integrate(x**2 * S** 1, x) integrate(x**2 * S** 2, x) integrate(x**2 * S** 3, x) integrate(x**2 * sqrt(4 - 9 * x**2)**-1, x) # bom integrate(x**2 * sqrt(1 - x**2)**-1, x) # Questao 4 # f = x**3 / (x**2 + 8*x + 12) f = x**3 / (x**2 + 7*x + 12) g = x - 7 + (37*x + 84) / ((x+3)*(x+4)) apart(f) apart(g) integrate(f, x) apart(f) integrate(f, x) f g = x - 7 + (37*x + 84) / ((x+3)*(x+4)) g apart(f) apart(g) integrate(f, x) # Questao 2 # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 1) # (find-pdf-page "~/LATEX/2018-2-C2-P1.pdf" 2) ##### # # 2019.1-C2-P2 # 2019jul04 # ##### # «2019.1-C2-P2» (to ".2019.1-C2-P2") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) s,u,z = symbols("s,u,z") s,u,z,dx,dy = symbols("s,u,z,dx,dy") f = Function('f') # Questão 1 eq = f(x).diff(x,x) + 8*f(x).diff(x) - 20*f(x) eq dsolve(eq, f(x)) sol = dsolve(eq, f(x)).rhs sol soll = sol.diff(x) soll sol0 = sol .subs(x, 0) soll0 = soll.subs(x, 0) sol0, soll0 solC = solve([sol0 - 1, soll0 - 0]) solC sol.subs(solC) str(sol.subs(solC)) # 1a) (D-2)(D+10)f # 1b) exp(2*x), exp(-10*x) # 1c) 5*exp(2*x)/6 + exp(-10*x)/6 * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # Questao 2: # (find-es "sympy" "linear-order2-complex") # (find-es "sympy" "Function") # (find-es "sympy" "Symbol") f1,f2,f3,f4 = symbols('f1,f2,f3,f4', cls=Function) D = symbols("D") a, b = -4, 3 ((D - (a+b*I)) * (D - (a-b*I))) ((D - (a+b*I)) * (D - (a-b*I))).expand() ((D - (-4+3*I)) * (D - (-4-3*I))) ((D - (-4+3*I)) * (D - (-4-3*I))).expand() eq = f(x).diff(x,x) + 8*f(x).diff(x) + 25*f(x) f1 = exp((a+b*I)*x) f2 = exp((a-b*I)*x) f1 f2 dsolve(eq, f(x)) f3 = cos(3*x) * exp(-4*x) f4 = sin(3*x) * exp(-4*x) # eq.subs(f, f3) # eq.subs(f(x), f3(x)) # 2a) (D - (-4+3*I)) (D - (-4-3*I)) f # 2b) f1 = exp ((-4+3*I)*x), # f2 = exp ((-4-3*I)*x) # 2c) f3 = cos(3x) * exp(-4*x), # f4 = sin(3x) * exp(-4*x) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # Questão 3 f = Function('f') g = (x**2 + 3) / (y+4)**5 g g.subs(y, f(x)) myeq = f(x).diff(x) - g.subs(y, f(x)) myeq dsolve(myeq, f(x)) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # Questão 5 execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") f = sin(x) g = cos(x) h = f - g h.subs(x, 0) h.subs(x, pi/4) h.subs(x, R(5,4)*pi) # integrate(h, x) integrate(h, (x, R(0,4)*pi, R(1,4)*pi)) A = integrate(h, (x, R(1,4)*pi, R(5,4)*pi)) B = integrate(h, (x, R(5,4)*pi, R(8,4)*pi)) A B A - B f = Function('f') eq = f(x).diff(x,x) + 4*f(x).diff(x) + 13*f(x) dsolve(eq, f(x)) f3 = cos(3*x) * exp(-2*x) f4 = sin(3*x) * exp(-2*x) f3 = Lambda(x, cos(3*x) * exp(-2*x)) f4 = Lambda(x, sin(3*x) * exp(-2*x)) f3 2*f3 Lambda(x, 2*f3(x)) f1.diff(x) eq.subs(f, sin) eq.subs(f, sin).expand() eq.subs(f, f3).expand() f = Lambda(x, x**2) ##### # # 2019.1-C2-VR # 2019jul04 # ##### # «2019.1-C2-VR» (to ".2019.1-C2-VR") # (find-angg "LATEX/2019-1-C2-VR.tex") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # Questao 1 f = (x**3 + 4) / (x**2 - x - 20) apart(f) # Questao 2 solve(9 - 4*x**2, x) a = -R(3,2) b = R(3,2) f = sqrt(9 - 4*x**2) f integrate(f, x) # Questao 3 execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") s,u,z = symbols("s,u,z") t,th = symbols("t,th") E,Einv = symbols("E,Einv") Sn = lambda n: (E**n - E**-n) / (2*I) Cn = lambda n: (E**n + E**-n) / 2 expr = Sn(1)**6 expr expr.expand() expr2 = Cn(6)/-32 + R(3,16)*Cn(4) - R(15,32)*Cn(2) + R(5,16) expr2 expr2 - expr.expand() # Sn = lambda n: sin(n*th) Cn = lambda n: cos(n*th) expr = Cn(6)/-32 + R(3,16)*Cn(4) - R(15,32)*Cn(2) + R(5,16) integrate(expr, th) g = x - 7 + (37*x + 84) / ((x+3)*(x+4)) apart(g) integrate(f, x) apart(f) integrate(f, x) f g = x - 7 + (37*x + 84) / ((x+3)*(x+4)) g apart(f) apart(g) integrate(f, x) ##### # # 2019.1-C2-VS # 2019jul04 # ##### # «2019.1-C2-VS» (to ".2019.1-C2-VS") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) f = x**3 * sqrt(1 - x**2) integrate(f, x) ##### # # 2019.1-C3-P1 # 2019jun17 # ##### # «2019.1-C3-P1» (to ".2019.1-C3-P1") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) F = exp(2) * sin(x*y) F F.diff(x) F.diff(y) F.diff(x,x) F.diff(x,y) F.diff(y,y) F = (x-y) / (x+y) F F.diff(x) F.diff(x).together() F.diff(y) F.diff(y).together() F.diff(x,x) F.diff(x,y) F.diff(y,y) # (find-es "sympy" "tut-solve") ##### # # 2019.1-C3-VR # 2019jul09 # ##### # «2019.1-C3-VR» (to ".2019.1-C3-VR") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) F = exp(x) * ln(x + 2*y) F F.diff(x) F.diff(x,x) F.diff(x,y) F.diff(y) F.diff(y,y) G = Function('G') h = Function('h') F = G(x,y)/h(x) F.diff(x) F.diff(x,x) F.diff(x,y) F.diff(y) F.diff(y,y) F = sqrt(x**2 + y**2) F F.diff(x) F.diff(x,x) F.diff(x,y) F.diff(y) F.diff(y,y) ##### # # 2019.2-C3-P2 # 2019dec12 # ##### # «2019.2-C3-P2» (to ".2019.2-C3-P2") # (find-angg "LATEX/2019-1-C3-P2.tex") # (find-pdf-page "~/LATEX/2019-1-C3-P2.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") # Questao 2 # (find-pdf-page "~/LATEX/2019-1-C3-P2.pdf") # dt,m,ga = symbols("dt,m,ga") t0 = 5 g = 6 + dt h = 7 + m * dt F = 4 * (x-6)**2 + ga * (x-6) * (y-7) + 9 * (y-7)**2 F.subs(x, g).subs(y, h) F.subs(x, g).subs(y, h).subs(dt, 1) eq = F.subs(x, g).subs(y, h).subs(dt, 1).subs(ga, 12) eq solve(eq) # Questao 1 # (find-pdf-page "~/LATEX/2019-1-C3-P2.pdf") # (find-es "sympy" "lagrange-multipliers") # la = symbols('la') F = x - (y - 1)**2 H = x**2 + 4*y**2 - 4 L = F - la*H grad_F = M([F.diff(x), F.diff(y)]) grad_H = M([H.diff(x), H.diff(y)]) L_xyla = M([L.diff(x), L.diff(y), L.diff(la)]) L_xyla L_xy = M([L.diff(x), L.diff(y)]) sol = solve(L_xy) sol sol = solve(L_xyla) sol grad_F.subs(sol) grad_H.subs(sol) ##### # # 2019.2-C3-VR # 2019dec13 # ##### # «2019.2-C3-VR» (to ".2019.2-C3-VR") # (find-LATEX "2019-2-C3-VR.tex") # (find-pdf-page "~/LATEX/2019-2-C3-VR.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") s = lambda k: sin(k * pi/6) c = lambda k: cos(k * pi/6) s(0), s(1), s(2), s(3), s(4), s(5), s(6) c(0), c(1), c(2), c(3), c(4), c(5), c(6) # (find-es "sympy" "lagrange-multipliers") # la = symbols('la') F = x * (x-y) F = x * (y - 1) H = x**2 + 4*y**2 - 4 H = x**2 + y**2 - 4 L = F - la*H grad_F = M([F.diff(x), F.diff(y)]) grad_H = M([H.diff(x), H.diff(y)]) L_xyla = M([L.diff(x), L.diff(y), L.diff(la)]) L_xyla L_xy = M([L.diff(x), L.diff(y)]) solxy = solve(L_xy) solxy sol = solve(L_xyla) sol grad_F.subs(sol) grad_H.subs(sol) ##### # # 2019.2-C3-VS # 2019dec20 # ##### # «2019.2-C3-VS» (to ".2019.2-C3-VS") # (find-LATEX "2019-2-C3-VS.tex") # (find-pdf-page "~/LATEX/2019-2-C3-VS.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") a,b,c,t,u = symbols("a,b,c,t,u") # Questao 1 P = M([cos(t), sin(2*t)]) Pd = P.diff(t) P Pd M([P, Pd]).subs(t, pi) M([P, Pd]).subs(t, aa) M([P, Pd]).subs(t, R(1,2)*pi) # Questao 3 # (find-es "sympy" "lagrange-multipliers") # la = symbols('la') F = x-y H = x**2 + 4*y**2 - 4 L = F - la*H grad_F = M([F.diff(x), F.diff(y)]) grad_H = M([H.diff(x), H.diff(y)]) L_xyla = M([L.diff(x), L.diff(y), L.diff(la)]) L_xyla L_xy = M([L.diff(x), L.diff(y)]) solxy = solve(L_xy) solxy sol = solve(L_xyla) sol grad_F.subs(sol) grad_H.subs(sol) ##### # # 2019.2-C2-P1 (ambas as turmas) # 2019oct29 # ##### # «2019.2-C2-P1» (to ".2019.2-C2-P1") % (find-pdf-page "~/LATEX/2019-2-C2-P1.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") a,b,c,t,u = symbols("a,b,c,t,u") # Questao 1 ss = sqrt(4*x + 5) f = (2*x + 3) * ss f.expand() integrate(ss, x) (2*x + 3).subs(x, (u-5)/4) (2*x + 3).subs(x, (u-5)/4) * R(1,4) F0 = a * ss ** 5 + b * ss ** 3 F0 = (a*x + b) * ss ** 3 (F0.diff(x) - f).expand().together() (F0.diff(x) - f).expand().together() / ss eq = (F0.diff(x) - f).expand().together() / ss eq so = solve(eq, [a, b]) so = solve(eq, [a, b, c]) so F = F0.subs(so) (F.diff() - f).expand() F U = 2*x + 3 v = sqrt(4*x + 5) V = integrate(v, x) u = U.diff(x) F = U * v - integrate(u * V, x) F U * v U * v - f (F.diff(x) - f).expand() (F.diff(x) - f).expand().together() # Questao 2 f = x**3 * sqrt(1 - x**2) f F = integrate(f, x) F ss = sqrt(1 - x**2) G = R(1,5) * ss**5 - R(1,3) * ss**3 G (G.diff() - f).expand() f = Sin(1)**3 * Cos(1)**2 expify(f) fe = getsin(f, 5) + getsin(f, 3) + getsin(f, 1) fe # Questao 3 # (find-pdf-page "~/LATEX/2019-2-C2-P1.pdf") f = Sin(5)**2 * Cos(6)**2 f expify(f) fe = getconst(f) + getcos(f, 2) + getcos(f, 10) + getcos(f, 12) + getcos(f, 22) fe integrate(fe, th) # fe = # # cos(2*th) cos(10*th) cos(12*th) cos(22*th) 1 # - --------- - ---------- + ---------- - ---------- + - # 8 4 4 8 4 # # integrate(fe, th) = # # th sin(2*th) sin(10*th) sin(12*th) sin(22*th) # -- - --------- - ---------- + ---------- - ---------- # 4 16 40 48 176 # (find-es "sympy" "tut-solve") # Questao 4 # f0 = x**3 / (x**2 + 7*x + 12) f0 = x**3 / (x**2 + 9*x + 20) f0 f0.apart() (f0.apart() - x + 9) (f0.apart() - x + 9).together() (f0.apart() - x + 9).together() + x - 9 f0.apart() integrate(f0, x) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") f = 3 + 4*Sin(5) + 6*Cos(7) f expify(f) getconst(f) getsin(f, 5) getcos(f, 7) getconst(f) + getsin(f, 5) + getcos(f, 7) ##### # # 2019.2-C2-P2 # 2019dec11 # ##### # «2019.2-C2-P2» (to ".2019.2-C2-P2") # (find-LATEX "2019-2-C2-P2.tex") # (find-pdf-page "~/LATEX/2019-2-C2-P2.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") # Questao 1 f = Function('f') eq = f(x).diff(x) - x**3 / exp(2*f(x)) eq sol = dsolve(eq) sol sol[1] sol[1].rhs g = sol[1].rhs g.subs(x, 4) solve(g.subs(x, 4) - 5) # Questao 2 # (find-es "sympy" "linear-order2-real") eq = f(x).diff(x, x) - 8*f(x).diff(x) - 20*f(x) eq sol = dsolve(eq) g = sol.rhs g cond1 = g.subs(x, 0) - 2 cond2 = g.diff(x).subs(x, 0) - 3 solg = solve((cond1, cond2)) solg g.subs(solg) # Questao 3 # (find-es "sympy" "linear-order2-complex") eq = f(x).diff(x, x) - 6*f(x).diff(x) + 25*f(x) eq sol = dsolve(eq) sol # f1 = exp((3+4*I)*x) f1 eq.subs(f(x), f1) eq.subs(f(x), f1).expand() # Questao 4 # (find-es "sympy" "exactify") M0, N0 = 2 * x * y**3, 3 * x**2 * y**2 M1, N1 = 2 * x**2 * y**3, 3 * x**3 * y**2 exactness(M0, N0) exactness(M1, N1) eq = (M0 * f(x).diff(x) + N0).subs(y, f(x)) eq sol = dsolve(eq) sol mux = exactify_xie(M1, N1) M2,N2 = mux*M1,mux*N1 M2,N2 exactness(M2,N2) ##### # # 2019.2-C2-VR # 2019dec12 # ##### # «2019.2-C2-VR» (to ".2019.2-C2-VR") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") a,b,c,u = symbols("a,b,c,u") f = 1 / sqrt(4 + 9 * x**2) f F = integrate(f, x) F f = exp(sqrt(x)) / sqrt(x) integrate(f, x) f = exp(a*x) * cos(b*x) f = exp(4*I*x) * cos(4*x) integrate(f, x) ##### # # 2019.2-C2-VS # 2019dec20 # ##### # «2019.2-C2-VS» (to ".2019.2-C2-VS") # (find-LATEX "2019-2-C3-VS.tex") # (find-pdf-page "~/LATEX/2019-2-C3-VS.pdf") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") a,b,c,u = symbols("a,b,c,u") # Questao 2 f0 = x**2 / (x**2 + 3*x - 10) f0 f0.apart() (f0.apart() - 1) (f0.apart() - 1).together() (f0.apart() - 1).together() + 1 f0.apart() integrate(f0, x) # Questao 3 f = x**3 * sqrt(1 - x**2) ** 3 f F = integrate(f, x) F ##### # # 2020.1: slides sobre substituição trigonométrica # 2020nov26 # ##### # «2020.1-int-subst» (to ".2020.1-int-subst") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") sx = sqrt(1 - x**2) integrate(x*sx, x) diff(sx, x) f = x * sx F = R(1,3) * (x**2 - 1) * sx f F F.diff(x) F.diff(x).together() F.diff(x).together() - f ##### # # 2020.1-C2-MT1 # 2020dec10 # ##### # «2020.1-C2-MT1» (to ".2020.1-C2-MT1") * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") f = x - 1 F = integrate(f, x) F F.subs(x,2) P = lambda b: (b, F.subs(x,b)) P(2) P(2.1) P(2.2) P(2.3) P(2.4) P(2.5) P(2.6) P(2.7) P(2.8) P(2.9) P(3) ##### # # 2020.1-C2-P1 # 2020dec01 # ##### # «2020.1-C2-P1» (to ".2020.1-C2-P1") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") # Questao 1 # (c2m201p1p 3 "questao-1") # (c2m201p1 "questao-1") f = x**2 - 1 f integrate(f, (x, 0, 2)) # Questao 3 # (c2m201p1p 5 "questao-3") # (c2m201p1 "questao-3") f = x**3 / (x**2 + 5*x + 6) apart(f) fj1 = - x**3 / (x + 3) fj2 = x**3 / (x + 2) together(fj1 + fj2) ##### # # 2020.1-C2-P2 # 2020dec02 # ##### # «2020.1-C2-P2» (to ".2020.1-C2-P2") * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") f = 1 / (1 + x**2) integrate(f, x) f = 1 / (z * sqrt(z**2 - 1)) integrate(f, z) f = 1 / (1 + 4 * x**2) integrate(f, x) # https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Derivatives_of_inverse_trigonometric_functions asec(x).diff(x) asec(x).diff(x) - 1 / (x * sqrt(x**2 - 1)) (asec(x).diff(x) - 1 / (x * sqrt(x**2 - 1))).together() (asec(x).diff(x) - 1 / (x * sqrt(x**2 - 1))).subs(x, R(1,4)) (asec(x).diff(x) - 1 / (x * sqrt(x**2 - 1))).subs(x, R(3,4)) ##### # # 2020.1-C3-P1 # 2020dec11 # ##### # «2020.1-C3-P1» (to ".2020.1-C3-P1") * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") # Questao 1 # (c3m201p1p 3 "questao-1") # (c3m201p1 "questao-1") F = x*y (x0,y0) = (4,2) F.diff(x) F.diff(y) F.diff(x).subs(x,x0).subs(y,y0) F.diff(y).subs(x,x0).subs(y,y0) # Questao 2 # (c3m201p1p 4 "questao-2") # (c3m201p1 "questao-2") G = x**2 + 4 * y**2 H = sqrt(G) # 2c (0.1 pts) e 2d (0.2 pts): (M([diff(G, x), diff(G, y)]), M([diff(G, x), diff(G, y)]).subs(x, 3).subs(y, 1) ) # 2e (0.3 pts) e 2f (0.4 pts): (M([diff(H, x), diff(H, y)]), M([diff(H, x), diff(H, y)]).subs(x, 3).subs(y, 1) ) ##### # # 2020.1-C3-P2 # 2020dec11 # ##### # «2020.1-C3-P2» (to ".2020.1-C3-P2") ##### # # watts-strogatz # 2020may30 # ##### # «watts-strogatz» (to ".watts-strogatz") # https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/ # http://worrydream.com/ScientificCommunicationAsSequentialArt/ ##### # # bortolossi-5.5 # 2021mar04 # ##### # «bortolossi-5.5» (to ".bortolossi-5.5") # (find-es "maxima" "bortolossi-5.5") # (find-bortolossi5page (+ -162 177) "[01] ...parciais de primeira ordem") * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) * (eepitch-eshell) * (eepitch-kill) * (eepitch-eshell) isympy3 • (eepitch-isympy) • (eepitch-kill) • (eepitch-isympy) ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") r,s,t,v,x,y,z = symbols("r,s,t,v,x,y,z") # a) f = sqrt(r**2 + s**2) f.diff(r), f.diff(s) # b) f = t/s - s/t f.diff(s), f.diff(t) # c) f = 2 * x**4 * y**3 - x * y**2 + 3 * y + 1 f.diff(x), f.diff(y) # d) f = ln(sqrt( (t+v)/(t-v) )) f.diff(t), f.diff(v) f.diff(t).together(), f.diff(v).together() # (find-sh "which isympy3") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # execfile(os.getenv("HOME")+"/.sympyrc.py") # (find-angg ".sympyrc.py") ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") P = V2(x, sqrt(x)) P.subs(x, 4) * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") F = sin(exp(3*x)) F = sin(exp(2*x)) / 2 F.diff(x) (+ 2.8 3.5 1.7) * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) f = x**3 g = (x**2 + 3*x -10) f / g apart(f / g) q = x - 3 f - q * g r = (f - q * g).expand() r r / g r x**3 - * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 f = sqrt(25 - x**2) f f.diff(x) ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") G = 25 - x**2 - y**2 F = G/5 F.diff(y) F.diff(y).subs(x,1).subs(y,2) f = sin(2*x + 3) integrate(f, x) f = 4 - (x - 2)**2 f integrate(f, x) f = exp(-x) f = sqrt(x) f = Function('f') eq = f(x) + 1/f(x).diff(x) eq sol = dsolve(eq) sol * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 s = sqrt(x) s.diff() f = (2*x + 3)**10 integrate(f, x) f = (2*s + 3)**10 * s.diff() integrate(f, x) * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 f = atan(x) f.subs(x, 1) f.diff(x) f.diff(x).subs(x, 1) f.diff(x).diff(x) f.diff(x).diff(x).subs(x, 1) f.diff(x).diff(x).diff(x).subs(x, 1) F = sin(2 + sqrt(3*x + 4)) f = F.diff(x) f integrate(f, x) latex(f) u = 2 + sqrt(3*x + 4) u.diff(x) latex(u.diff(x)) * (eepitch-vterm) * (eepitch-kill) * (eepitch-vterm) isympy3 a,b = symbols("a,b") f = a*x + b f * f integrate(f, x) integrate(f*f, x) integrate(f, (x, 0, 1)) integrate(f*f, (x, 0, 1)) A = integrate(f, (x, 0, 1)) B = integrate(f*f, (x, 0, 1)) cond1 = A - 1 cond2 = B - 1 solve((cond1, cond2)) solve(A - 1) solve(A - 1) solve(B - 1) ##### # # Choosing the coefficients for a 3D perspective # 2021aug09 # ##### # «perspective» (to ".perspective") # (c3m202planotangp 27 "3D-fig") # (c3m202planotanga "3D-fig") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) ee_dofile("~/.sympyrc.py") # (find-angg ".sympyrc.py") a,b,c,d,e,k = symbols("a,b,c,d,e,k") a = 0.8 b = sqrt(1 - a**2) d = k * c e = sqrt(1 - c**2 - d**2) pz = V3(0, a, b) px = V3(c, d, e) py = vprod(pz, px) pz, px, py ##### # # 2021.1-C3-P1 # 2021sep03 # ##### # «2021.1-C3-P1» (to ".2021.1-C3-P1") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) z = y * (x-y) z # x0 = 0 x0 = -1 y0 = 1 z0 = z.subs(x, x0).subs(y, y0) z0 ss = solve(z - z0, y) # solutions sa = solve(z - z0, y)[1] # above sb = solve(z - z0, y)[0] # below sa sb sa.subs(x, x0) sa.diff(x) sa.diff(x).subs(x, x0) f = 2 + sqrt(x) f.diff(x) ##### # # 2021.1-C2-P2 # 2021sep21 # ##### # «2021.1-C2-P2» (to ".2021.1-C2-P2") * (eepitch-isympy) * (eepitch-kill) * (eepitch-isympy) # (c2m211p2p 13 "questoes-1def-gab") # (c2m211p2a "questoes-1def-gab") # Daise: C3 = symbols("C3") f = sqrt(2 * (x**2/2 + C3)) f f.diff(x) f .subs(C3, 0) f.diff(x).subs(C3, 0) https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks http://nbviewer.jupyter.org/github/lgiordani/blog_source/blob/master/pelican/content/notebooks/Python_3_OOP_Part_2__Classes_and_members.ipynb https://www.youtube.com/watch?v=LmIwkA4_c6Q&feature=youtu.be https://www.facebook.com/portalconfluencias/videos/539432586248223/ https://www.youtube.com/watch?v=hyByTc8OcCk&feature=share https://www.facebook.com/groups/556513917890368/permalink/578195885722171/ # Local Variables: # coding: utf-8-unix # End: