Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2016-1-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-C2-P1.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2016-1-C2-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2016-1-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2016-1-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-1-C2-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2016-1-C2-P1.pdf")) % (code-eec-LATEX "2016-1-C2-P1") % (find-pdf-page "~/LATEX/2016-1-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2016-1-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-1-C2-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-1-C2-P1.pdf % file:///tmp/2016-1-C2-P1.pdf % file:///tmp/pen/2016-1-C2-P1.pdf % http://angg.twu.net/LATEX/2016-1-C2-P1.pdf % (find-LATEX "2019.mk") % (find-lualatex-links "2016-1-C2-P1") % (find-angg "LATEX/2016-1-C2-P1.tex") % (find-angg "LATEX/2016-1-C2-P1.lua") % (find-es "ipython" "2016.1-C2-P1") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2016-1-C2-P1.tex" :end)) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2016-1-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2016-1-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2016-1-C2-P1")) % (find-xpdfpage "~/LATEX/2016-1-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2016-1-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2016-1-C2-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2016-1-C2-P1.pdf % file:///tmp/2016-1-C2-P1.pdf % file:///tmp/pen/2016-1-C2-P1.pdf % http://angg.twu.net/LATEX/2016-1-C2-P1.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} %\usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") % \begin{document} % \catcode`\^^J=10 % \directlua{dednat6dir = "dednat6/"} % \directlua{dofile(dednat6dir.."dednat6.lua")} % \directlua{texfile(tex.jobname)} % \directlua{verbose()} % %\directlua{output(preamble1)} % \def\expr#1{\directlua{output(tostring(#1))}} % \def\eval#1{\directlua{#1}} % \def\pu{\directlua{pu()}} % \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") % %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % (find-LATEX "2015-2-C2-P1.tex") \def\ddx{\frac{d}{dx}} \def\ddth{\frac{d}{d\theta}} \def\arcsen{\operatorname{arcsen}} \def\sen{\operatorname{sen}} \def\sec{\operatorname{sec}} \def\ln{\operatorname{ln}} \def\subst#1{\left[\sm{#1}\right]} \def\prims #1{∫#1\,ds} \def\primth#1{∫#1\,dθ} \def\difs #1#2#3{\left. #3 \right|_{s=#1}^{s=#2}} \def\difu #1#2#3{\left. #3 \right|_{u=#1}^{u=#2}} \def\difx #1#2#3{\left. #3 \right|_{x=#1}^{x=#2}} \def\difth#1#2#3{\left. #3 \right|_{θ=#1}^{θ=#2}} % Indefinite integrals \def\ints #1{∫#1\,ds} \def\intc #1{∫#1\,dc} \def\intt #1{∫#1\,dt} \def\intu #1{∫#1\,du} \def\intx #1{∫#1\,dx} \def\intz #1{∫#1\,dz} \def\intth#1{∫#1\,dθ} % Definite integrals \def\Ints #1#2#3{∫_{s=#1}^{s=#2}#3\,ds} \def\Intt #1#2#3{∫_{t=#1}^{t=#2}#3\,dt} \def\Intu #1#2#3{∫_{u=#1}^{u=#2}#3\,du} \def\Intx #1#2#3{∫_{x=#1}^{x=#2}#3\,dx} \def\Intz #1#2#3{∫_{z=#1}^{z=#2}#3\,dz} \def\Intth#1#2#3{∫_{θ=#1}^{θ=#2}#3\,dθ} % Difference \def\Difs #1#2#3{\left. #3 \right|_{s=#1}^{s=#2}} \def\Difu #1#2#3{\left. #3 \right|_{u=#1}^{u=#2}} \def\Difx #1#2#3{\left. #3 \right|_{x=#1}^{x=#2}} \def\Difth#1#2#3{\left. #3 \right|_{θ=#1}^{θ=#2}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2016.1 \par P1 - 4/jul/2016 - Eduardo Ochs % \par Versão: 14/mar/2016 \par Links importantes: \par \url{http://angg.twu.net/2016.1-C2.html} (página do curso) \par \url{http://angg.twu.net/2016.1-C2/2016.1-C2.pdf} (quadros) \par \url{http://angg.twu.net/LATEX/2016-1-C2-material.pdf} \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk % (c2q 7 "integral de Riemann") % (c2q 9 "integral de Riemann sem partição especificada") % (c2q 11 "TFC") % (c2q 13 "TFC 2") % (c2q 15 "Substituição") % (c2q 16 "Diferenciais") % (c2q 22 "G(x,y) = x^2 + y^2") % (c2q 24 "Derivada da função inversa") % (c2q 27 "Integrando funções racionais") % (c2q 30 "Método de Heaviside") % (c2q 32 "Integrando funções racionais impróprias") % (c2q 34 "Integração por partes") % (c2q 35 "Truque do `onde'") % (c2q 36 "Tabelas de integrais") % (c2q 37 "Substituição trigonométrica") % (c2q 43 "Série de Taylor") % (c2q 45 "Plano complexo") % (c2q 48 "Grande truque: E") % (c2q 50 "Substituição trigonométrica") % (c2q 51 "EDOs") % (c2q 53 "EDOs: D") % (c2q 55 "EDOs: sen e cos vezes exp") % (find-es "ipython" "2015.2-C2-P1") 1) \T(Total: 1.0 pts) Calcule $\intx {\tan x}$. \bsk 2) \T(Total: 1.0 pts) Calcule $\Intx {-1} {2} {x^{-4}}$. \bsk 3) \T(Total: 1.5 pts) Calcule $\intx {\cos^4 x}$. \bsk 4) \T(Total: 1.5 pts) Calcule $\intx {\frac {x^2} {x^2+x-2}}$. \bsk 5) \T(Total: 1.5 pts) Calcule $\intx {x \, e^x \cos x}$. \bsk 6) \T(Total: 2.0 pts) 6a) \B(1.5 pts) Calcule $\Intx 0 1 {\sqrt{4-x^2}}$. 6b) \B(0.1 pts) Represente $\Intx 0 1 {\sqrt{4-x^2}}$ graficamente. 6c) \B(0.4 pts) Mostre como calcular $\Intx 0 1 {\sqrt{4-x^2}}$ pelo gráfico. \bsk 7) \T(Total: 2.5 pts) Calcule $\Intx {-1} {2} {|e^x-1|}$. \newpage Método de Heaviside: Se $f(x) = \frac{\aa}{x-a} + \frac{\bb}{x-b} + \frac{\cc}{x-c} = \frac{p(x)}{(x-a)(x-b)(x-c)}$, então $\lim_{x \to a} f(x)(x-a) = \aa = \frac{p(a)}{(a-b)(a-c)}$. \bsk Substituição: \msk $\begin{array}{l} \Difx a b {g(h(x))} = \Intx a b {g'(h(x))\frac{d\,h(x)}{dx}} \\ \phantom{mmm}|\,| \\ \Difu {h(a)} {h(b)} {g(u))} = \Intu {h(a)} {h(b)} {g'(u)} \\ \end{array} $ \msk Fórmulas: \msk $\begin{array}{l} \Intx a b {f(g(x))\frac{d\,g(x)}{dx}} \\ = \Intx a b {f(u)\frac{du}{dx}} \\ = \Intu {g(a)} {g(b)} {f(u)} \end{array} \qquad \begin{array}{ll} \intx {f(g(x))\frac{d\,g(x)}{dx}} \\ = \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)} \\ = \intu {f(u)} & \subst{u=g(x)} \end{array} $ \bsk Substituição inversa: $\def\a{{h¹(α)}} \def\b{{h¹(β)}} \begin{array}{l} \Difx \a \b {g(h(x))} = \Intx \a \b {g'(h(x))\frac{d\,h(x)}{dx}} \\ \phantom{mmm}|\,| \\ \Difu {h(\a)} {h(\b)} {g(u))} = \Intu {h(\a)} {h(\b)} {g'(u)} \\ \phantom{mmm}|\,| \\ \Difu α β {g(u))} = \Intu α β {g'(u)} \\ \end{array} $ \msk Fórmulas: \msk $\def\a{{g¹(α)}} \def\b{{g¹(β)}} \begin{array}{l} \Intu α β {f(u)} \\ = \Intx \a \b {f(u)\frac{du}{dx}} \\ = \Intx \a \b {f(g(x))\frac{d\,g(x)}{dx}} \end{array} \qquad \begin{array}{ll} \intu {f(u)} \\ = \intx {f(u)\frac{du}{dx}} & \subst{u=g(x)\\x=g¹(u)} \\ = \intx {f(g(x))\frac{d\,g(x)}{dx}} & \subst{x=g¹(u)} \\ \end{array} $ \bsk Substituição trigonométrica: \msk $ \begin{array}{ll} \Ints a b {F(s, \sqrt{1-s^2})} \\ = \Intth {\arcsen a} {\arcsen b} {F(\senθ, \sqrt{1-\sen^2θ}) \frac{d\senθ}{dθ}} \\ = \Intth {\arcsen a} {\arcsen b} {F(\senθ, \cosθ) \cosθ} \\ \end{array} \qquad \begin{array}{ll} \ints {F(s, \sqrt{1-s^2})} \\ = \intth {F(s, \sqrt{1-s^2}) \frac{ds}{dθ}} & \subst{s=\senθ \\ θ=\arcsenθ} \\ = \intth {F(s, c) c} & \subst{s=\senθ \\ c=\cosθ \\ θ=\arcsenθ} \\ \end{array} $ \msk $ \begin{array}{ll} \Intz a b {F(z, \sqrt{z^2-1})} \\ = \Intth {\arcsec a} {\arcsec b} {F(\secθ, \sqrt{\sec^2θ-1}) \frac{d\secθ}{dθ}} \\ = \Intth {\arcsec a} {\arcsec b} {F(\secθ, \tanθ) \secθ \tanθ} \\ \end{array} \qquad \begin{array}{ll} \intz {F(z, \sqrt{z^2-1})} \\ = \intth {F(z, \sqrt{z^2-1}) \frac{dz}{dθ}} & \subst{z=\secθ \\ θ=\arcsec z} \\ = \intth {F(z, t) zt} & \subst{z=\secθ \\ θ=\arcsec z \\ t=\tanθ} \\ \end{array} $ \msk $ \begin{array}{ll} \Intt a b {F(t, \sqrt{1+t^2})} \\ = \Intth {\arctan a} {\arctan b} {F(\tanθ, \sqrt{1+\tan^2θ}) \frac{d\tanθ}{dθ}} \\ = \Intth {\arctan a} {\arctan b} {F(\tanθ, \secθ) \sec^2θ} \\ \end{array} \qquad \begin{array}{ll} \intt {F(t, \sqrt{1+t^2})} \\ = \intth {F(t, \sqrt{1+t^2}) \frac{dt}{dθ}} & \subst{t=\tanθ \\ θ=\arctan t} \\ = \intth {F(t, z) z^2} & \subst{t=\tanθ \\ θ=\arctan t \\ z=\secθ} \\ \end{array} $ \newpage % ____ _ _ _ % / ___| __ _| |__ __ _ _ __(_) |_ ___ % | | _ / _` | '_ \ / _` | '__| | __/ _ \ % | |_| | (_| | |_) | (_| | | | | || (_) | % \____|\__,_|_.__/ \__,_|_| |_|\__\___/ % Gabarito (não revisado, contém erros de vários tipos!): \bsk % _ % / | % | | % | | % |_| % 1) % $\begin{array}[t]{rcl} \intth {\tanθ} &=& \intth {\frac{s}{c}} \\ &=& \intth {\frac{1}{c} s} \\ &=& - \intc {\frac{1}{c}} \\ &=& - \ln |c| \\ &=& - \ln |\cosθ| \\ \end{array} $ % ____ % |___ \ % __) | % / __/ % |_____| % { \def\lima{\lim\limits_{a→0^-}} \def\limb{\lim\limits_{b→0^+}} \def\lima{\lim_{a→0^-}} \def\limb{\lim_{b→0^+}} \def\limap#1{\lim_{a→0^-} \left(#1\right)} \def\limbp#1{\lim_{b→0^+} \left(#1\right)} \def\p#1{\left(#1\right)} \bsk 2) % $\begin{array}[t]{rcl} \intx {x^{-4}} &=& \frac{x^{-3}}{-3} \\ \Intx{-1}{2} {x^{-4}} &=& \Intx{-1}{0} {x^{-4}} + \Intx{0}{2} {x^{-4}} \\ &=& \lima \Intx{-1}{a} {x^{-4}} + \limb \Intx{b}{2} {x^{-4}} \\ &=& \limap {\difx{-1}{a} {\frac{x^{-3}}{-3}}} + \limbp {\difx{b}{2} {\frac{x^{-3}}{-3}}} \\ &=& \limap {\frac{a^{-3}}{-3} - \frac{(-1)^{-3}}{-3}} + \limbp {\frac{2^{-3}}{-3} - \frac{b^{-3}}{-3}} \\ &=& \p {\frac{-∞}{-3} - \frac{-1}{-3}} + \p {\frac{1/8}{-3} - \frac{+∞}{-3}} \\ \end{array} $ } \bsk % _____ % |___ / % |_ \ % ___) | % |____/ % 3) Seja $E = e^{iθ}$. Então $\begin{array}[t]{rcl} \cosθ &=& \frac {E + E¹} {2}, \\ (\cosθ)^2 &=& \frac {E^2 + 2 + E^{-2}} {4}, \\ (\cosθ)^4 &=& \frac {E^4 + 4E^2 + 6 + 4E^{-2} + E^{-4}} {16} \\ &=& \frac 1 8 \frac{E^4 + E^{-4}}{2} + \frac 1 2 \frac{E^2 + E^{-2}}{2} + \frac 3 8 \\ &=& \frac 1 8 \cos 4θ + \frac 1 2 \cos 2θ + \frac 3 8 \\ \intth {(\cosθ)^4} &=& \intth {\frac 1 8 \cos 4θ + \frac 1 2 \cos 2θ + \frac 3 8} \\ &=& \frac 1 8 \frac{\sen 4θ}{4} + \frac 1 2 \frac{\sen 2θ}{2} + \frac 3 8 θ \\ &=& \frac{\sen 4θ}{32} + \frac{\sen 2θ}{4} + \frac 3 8 θ \\ \end{array} $ \bsk % _ _ % | || | % | || |_ % |__ _| % |_| % 4) $\frac {x^2} {x^2 + x - 2} = \frac {(x^2 + x - 2) - x + 2} {x^2 + x - 2} = 1 + \frac {- x + 2} {x^2 + x - 2} = 1 + \frac {- x + 2} {(x+2)(x-1)} $ Se $\frac {- x + 2} {(x+2)(x-1)} = \frac A {x+2} + \frac B {x-1}$ então $\lim_{x→-2} \frac {-x+2} {x-1} = A = \frac 4 {-3}$ e $\lim_{x→1} \frac {-x+2} {x+2} = B = \frac 1 3$. Conferindo: $\begin{array}[t]{rcl} \frac A {x+2} + \frac B {x-1} &=& \frac {-4/3} {x+2} + \frac {1/3} {x-1} \\ &=& \frac {- \frac 4 3 (x-1) + \frac 1 3 (x+2)} {(x+2)(x-1)} \\ &=& \frac {-x+2} {(x+2)(x-1)} \\ \end{array} $ Daí: $\begin{array}[t]{rcl} \intx {\frac {x^2} {x^2 + x - 2}} &=& \intx {1 + {-4/3} {x+2} + \frac {1/3} {x-1}} \\ &=& x - \frac 4 3 \ln |x+2| + \frac 1 3 \ln |x-1| \\ \end{array} $ \newpage % ____ % | ___| % |___ \ % ___) | % |____/ % \def\uf #1{\underbrace {#1}_{f}} \def\uff#1{\underbrace {#1}_{f'}} \def\ug #1{\underbrace {#1}_{g}} \def\ugg#1{\underbrace {#1}_{g'}} 5) Sejam $c = \cos x$, $s = \sen x$. Então $\intx {\uf{e^x} \ugg{c}} = \uf{e^x} \ug{s} - \intx {\uff{e^x} \ug{s}}$ $\intx {\uf{e^x} \ugg{s}} = \uf{e^x} \ug{(-c)} - \intx {\uff{e^x} \ug{(-c)}} = -e^x c + \intx {e^x c}$ \msk $\intx {e^x c} = e^x s - \intx {e^x s} = e^x s - (-e^x c + \intx {e^x c}) = e^x s + e^x c - \intx {e^x c} $ $2 \intx {e^x c} = e^x s + e^x c$ $\intx {e^x c} = (e^x s + e^x c)/2$ \msk $\intx {e^x s} = -e^x c + \intx {e^x c} = -e^x c + (e^x s + e^x c)/2 = (e^x s - e^x c)/2$ \msk $\begin{array}{rcl} \intx {\uf{x} \ugg{e^x c}} &=& \uf{x} \ug{(e^x s + e^x c)/2} - \intx {\uff{1} \ug{(e^x s + e^x c)/2}} \\ &=& \frac12 (x e^x s + x e^x c) - \frac12 \intx {e^x s} - \frac12 \intx{e^x c} \\ &=& \frac12 (x e^x s + x e^x c) - \frac14 (e^x s - e^x c) - \frac14 (e^x s + e^x c) \\ &=& \frac12 (x e^x s + x e^x c) - \frac12 e^x s \\ &=& \frac12 (x e^x s + x e^x c - e^x s) \\ \end{array} $ \bsk % __ % / /_ % | '_ \ % | (_) | % \___/ % 6) $\begin{array}[t]{rclcl} \sqrt{4 - x^2} &=& \sqrt{4 - 4(x/2)^2} \\ &=& \sqrt{4(1 - (x/2)^2)} \\ &=& 2 \sqrt{1 - (x/2)^2} \\ \intx {\sqrt{4 - x^2}} &=& \intx {2 \sqrt{1 - (x/2)^2}} && \bsm{s = x/2 \\ x = 2s \\ dx = 2ds} \\ &=& \ints {2 \sqrt{1 - s^2} · 2} \\ &=& 4 \ints {\sqrt{1 - s^2}} && \bsm{s = \senθ \\ θ = \arcsen s \\ ds = \cosθ dθ} \\ &=& 4 \intth {\sqrt{1 - (\senθ)^2} \cosθ} \\ &=& 4 \intth {(\cosθ)^2} \\ &=& 4 \intth {\frac {1 + \cos 2θ} 2 } \\ &=& 4 ({\frac θ2 + \frac {\sen 2θ} 4 }) \\ &=& 2θ + \sen 2θ \\ \end{array} $ \bsk % _____ % |___ | % / / % / / % /_/ % 7) $\begin{array}[t]{rclcl} \Intx{-1}{2} {|e^x-1|} &=& \Intx{-1}{0} {|e^x-1|} + \Intx{0}{2} {|e^x-1|} \\ &=& \Intx{-1}{0} {1-e^x} + \Intx{0}{2} {e^x-1} \\ &=& \difx{-1}{0} {(x-e^x)} + \difx{0}{2} {(e^x-x)} \\ &=& (0-e^0) - (-1-e^{-1}) + (e^2-2) - (e^0-0) \\ &=& -1 + 1 + e^{-1} + e^2 - 2 - 1 \\ &=& -3 + e^{-1} + e^2 \\ \end{array} $ \end{document} % Local Variables: % coding: utf-8-unix % End: