Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015-2-C2-P2.tex") % (find-angg "LATEX/2015-2-C2-P2.lua") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2015-2-C2-P2.tex" :end)) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2015-2-C2-P2.pdf")) % (defun e () (interactive) (find-LATEX "2015-2-C2-P2.tex")) % (defun u () (interactive) (find-latex-upload-links "2015-2-C2-P2")) % (defun z () (interactive) (find-zsh "flsfiles-tgz 2015-2-C2-P2.fls 2015-2-C2-P2.tgz")) % (find-xpdfpage "~/LATEX/2015-2-C2-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2015-2-C2-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2015-2-C2-P2.pdf /tmp/pen/") % file:///home/edrx/LATEX/2015-2-C2-P2.pdf % file:///tmp/2015-2-C2-P2.pdf % file:///tmp/pen/2015-2-C2-P2.pdf % http://angg.twu.net/LATEX/2015-2-C2-P2.pdf \documentclass[oneside]{book} %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input istanbuldefs % (find-LATEX "istanbuldefs.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} %\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %%L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2015.2 \par P2 - 21/mar/2016 - Eduardo Ochs % \par Versão: 14/mar/2016 % \par Links importantes: % \par \url{http://angg.twu.net/2015.2-C2.html} (página do curso) % \par \url{http://angg.twu.net/2015.2-C2/2015.2-C2.pdf} (quadros) % \par \url{http://angg.twu.net/LATEX/2015-2-C2-material.pdf} % \par {\tt eduardoochs@gmail.com} (meu e-mail) } \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} \bsk \bsk 1) \T(Total: 2.5 pts) Seja $(*)$ esta EDO: $f'' + 5f' + 6f = 0$. a) \B(1.0 pts) Encontre as soluções básicas de $(*)$. b) \B(0.5 pts) Encontre uma solução de $(*)$ que obedeça $f(0)=0$ e $f(1)=1$. c) \B(0.5 pts) Encontre uma solução de $(*)$ que obedeça $f(0)=1$ e $f(1)=0$. d) \B(0.5 pts) Encontre uma solução de $(*)$ que obedeça $f(0)=2$ e $f(1)=3$. \bsk 2) \T(Total: 2.5 pts) Seja $(**)$ esta EDO: $(D-(a+ib))(D-(a-ib))f = 0$ (obs: $a,b∈\R$). a) \B(1.0 pts) Encontre as soluções básicas de $(**)$. b) \B(1.0 pts) Encontre $a$ e $b$ para que $f(x) = e^{-x} \cos 2x$ seja solução de $(**)$. c) \B(0.5 pts) Com o $a$ e o $b$ do item anterior, reescreva $(**)$ na forma $f''+αf'+βf=0$ $(***)$ e verifique que $f(x) = e^{-x} \cos 2x$ obedece $(***)$. % (find-angg ".emacs.papers" "hernandez") \bsk 3) \T(Total: 5.0 pts) Seja $(****)$ esta EDO: $y' = \frac{\cos x}{2y}$. a) \B(1.0 pts) Encontre a solução geral de $(****)$. b) \B(1.0 pts) Encontre a solução $y=f(x)$ de $(****)$ na qual $f(2π)=-3$. c) \B(1.0 pts) Encontre uma solução $y=f(x)$ de $(****)$ na qual $f(π)=1$. d) \B(2.0 pts) Represente graficamente 4 soluções de $(****)$. Dica: calcule o comportamento delas em $x=k\fracπ2$ e improvise o resto. \newpage Gabarito: (Versão preliminar, não revisado) \bsk \def\e#1{e^{-#1x}} 1) $\begin{array}[t]{rcl} 0 &=& f'' + 5f' + 6f \\ &=& (D^2 + 5D + 6) f \\ &=& (D+2) (D=3) f \\ \end{array} $ 1a) $f_1(x) = \e2$, $f_2(x) = \e3$ 1b) Queremos $f_3(x) = af_1(x) + bf_2(x)$, com $\begin{array}[t]{rcl} f_3(0) = 0 &=& a·1 + b·1 = a+b \quad \funto \quad b=-a \\ f_3(1) = 1 &=& ae^{-2} + be^{-3} = ae^{-2} - ae^{-3} \\ a &=& \frac{1}{e^{-2}-e^{-3}} \\ b = -a &=& \frac{1}{e^{-3}-e^{-2}} \\ \end{array} $ 1c) Queremos $f_4(x) = cf_1(x) + df_2(x)$, com $\begin{array}[t]{rcl} f_4(0) = 1 &=& c+d \quad \funto \quad d=-1-c \\ f_4(1) = 0 &=& ce^{-2} + de^{-3} \\ &=& ce^{-2} + (1-c)e^{-3} \\ &=& c(e^{-2}-e^{-3}) + e^{-3} \\ c &=& - \frac{e^{-3}}{e^{-2}-e^{-3}} \\ &=& \frac{e^{-3}}{e^{-3}-e^{-2}} \\ d &=& 1 - \frac{e^{-3}}{e^{-3}-e^{-2}} \\ &=& \frac{(e^{-3}-e^{-2}) - e^{-3}} {e^{-3}-e^{-2}} \\ &=& \frac{e^{-2}} {e^{-2}-e^{-3}} \\ \end{array} $ 1d) $f_5(x) = 2f_4(x) + 3f_3(x)$. \bsk \bsk 2a) $f_1(x) = e^{(a+ib)x}$, $f_2(x) = e^{(a-ib)x}$, ou $f_3(x) = \frac{f_1(x)+f_2(x)}{2} = e^{ax} \frac{e^{ibx} + e^{-ibx}} {2} = e^{ax}\cos x$, $f_4(x) = \frac{f_1(x)-f_2(x)}{2i} = e^{ax} \frac{e^{ibx} - e^{-ibx}} {2i} = e^{ax}\sen x$, 2b) $a=-1$, $b=2$. $\begin{array}[t]{rcl} 0 &=& (D-(a+ib)) (D-(a-ib)) f \\ &=& (D-(-1+2i)) (D-(-1-2i)) f \\ &=& (D^2 -(-1+2i)D-(-1-2i)D + (-1+2i)(-1-2i)) f \\ &=& (D^2 +2D + (1+4)) f \\ &=& f'' + 2f' + 5f \\ \end{array} $ $\begin{array}[t]{rcl} D(e^{-x} \cos 2x) &=& - (e^{-x} \cos 2x) - 2 (e^{-x} \sen 2x) \\ D(e^{-x} \sen 2x) &=& - (e^{-x} \sen 2x) + 2 (e^{-x} \cos 2x) \\ \end{array} $ Sejam $C = e^{-x} \cos 2x$ e $S = e^{-x} \sen 2x$. Então $DC = -C-2S$, $DS = -S + 2C = 2C-S$, $D(DC) = -DC-2DS = -(-C-2S)-2(2C-S) = C+2S-4C+2S = -3C+4S$, $(D^2 +2D + 5)C = (-3C+4S) +2(-C-2S) + 5C = 0$. $\begin{array}[t]{l} \end{array} $ \end{document} % Local Variables: % coding: utf-8-unix % End: