Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2022-2-C3-P2.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2022-2-C3-P2.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2022-2-C3-P2.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2022-2-C3-P2.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2022-2-C3-P2.pdf")) % (defun e () (interactive) (find-LATEX "2022-2-C3-P2.tex")) % (defun o () (interactive) (find-LATEX "2022-2-C3-P2.tex")) % (defun u () (interactive) (find-latex-upload-links "2022-2-C3-P2")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2022-2-C3-P2.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2022-2-C3-P2") % (find-pdf-page "~/LATEX/2022-2-C3-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2022-2-C3-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2022-2-C3-P2.pdf /tmp/pen/") % (find-xournalpp "/tmp/2022-2-C3-P2.pdf") % file:///home/edrx/LATEX/2022-2-C3-P2.pdf % file:///tmp/2022-2-C3-P2.pdf % file:///tmp/pen/2022-2-C3-P2.pdf % http://angg.twu.net/LATEX/2022-2-C3-P2.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/") % (find-CN-aula-links "2022-2-C3-P2" "3" "c3m222p2" "c3p2") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.title» (to "title") % «.links» (to "links") % «.questao-1» (to "questao-1") % «.elipse» (to "elipse") % «.questao-2» (to "questao-2") % «.questao-3» (to "questao-3") % «.questao-4» (to "questao-4") % «.grids» (to "grids") % «.dicas-diferenciais» (to "dicas-diferenciais") % % «.questao-1-gab» (to "questao-1-gab") % «.questao-2-gab» (to "questao-2-gab") % «.questao-3-gab» (to "questao-3-gab") % «.questao-4-gab» (to "questao-4-gab") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c3m222p2" "2022-2-C3-P2") % (code-eevvideo "c3m222p2" "2022-2-C3-P2") % (code-eevlinksvideo "c3m222p2" "2022-2-C3-P2") % (find-c3m222p2video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") % %L dofile "QVis1.lua" -- (find-LATEX "QVis1.lua") % %L dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua") % %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") % %L Pict2e.__index.suffix = "%" \pu \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\u#1{\par{\footnotesize \url{#1}}} \def\drafturl{http://angg.twu.net/LATEX/2022-2-C3.pdf} \def\drafturl{http://angg.twu.net/2022.2-C3.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c3m222p2p 1 "title") % (c3m222p2a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 3 - 2022.2} \bsk P2 (Segunda prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://angg.twu.net/2022.2-C3.html} \end{center} \newpage % «links» (to ".links") % (c3m222dicasp2p 6 "abertos-e-fechados") % (c3m222dicasp2a "abertos-e-fechados") % (c3m222dicasp2p 5 "maximos-e-minimos") % (c3m222dicasp2a "maximos-e-minimos") % (c3m222dicasp2p 6 "notacao-de-fisicos") % (c3m222dicasp2a "notacao-de-fisicos") % (c3m222dpp 3 "um-exemplo") % (c3m222dpa "um-exemplo") % (c3m222dpp 2 "links") % (c3m222dpa "links") % (find-books "__analysis/__analysis.el" "leithold") % (find-books "__analysis/__analysis.el" "leithold" "reescritas usando") % (find-leitholdptpage (+ 17 275) "reescritas usando notação de Leibniz") % ___ _ _ % / _ \ _ _ ___ ___| |_ __ _ ___ / | % | | | | | | |/ _ \/ __| __/ _` |/ _ \ | | % | |_| | |_| | __/\__ \ || (_| | (_) | | | % \__\_\\__,_|\___||___/\__\__,_|\___/ |_| % % «questao-1» (to ".questao-1") % «elipse» (to ".elipse") % (c3m222p2p 2 "questao-1") % (c3m222p2a "questao-1") % (c3m222p2p 2 "elipse") % (c3m222p2a "elipse") %L Pict2e.bounds = PictBounds.new(v(-2,-2), v(2,2)) %L spec = "(0,1)--(1,1)--(2,4)--(3,5)--(4,4)o (4,3)c (4,1)o--(6,3)--(7,3)" %L spec = "" %L pws = PwSpec.from(spec) %L pws:topict():prethickness("1pt"):pgat("pgatc"):sa("grid Q1"):output() \pu \scalebox{0.5}{\def\colwidth{10.5cm}\firstcol{ %\vspace*{-0.4cm} {\Large \bf Questão 1} \ssk \T(Total: 3.5 pts) \msk Sejam: % $$\begin{array}{rcl} P(x,y) &=& x^2 + y^2, \\ H(x,y) &=& xy, \\ E(x,y) &=& x^2 + 4y^2. \\ % A &=& \setofxyst{x,y∈\{-2,-1,0,1,2\}} \\ \end{array} $$ Represente graficamente: a) \B (0.1 pts) o diagrama de numerozinhos de $P(x,y)$, b) \B (0.2 pts) o digrama de numerozinhos de $H(x,y)$, c) \B (0.2 pts) o diagrama de numerozinhos de $E(x,y)$, d) \B (0.1 pts) pelo menos 5 curvas de nível de $P(x,y)$, e) \B (0.2 pts) pelo menos 5 curvas de nível de $H(x,y)$, f) \B (0.2 pts) pelo menos 5 curvas de nível de $E(x,y)$, \msk E os conjuntos abaixo: g) \B (0.2 pts) $C_1 = E^{-1}(4)$ h) \B (0.2 pts) $C_2 = E^{-1}(1)$ i) \B (0.3 pts) $C_3 = E^{-1}([1,4))$ j) \B (0.3 pts) $C_4 = H^{-1}([-2,1))$ k) \B (0.5 pts) $C_5 = C_3 ∩ C_4$ l) \B (0.5 pts) $C_6 = \Int(C_5)$ m) \B (0.5 pts) $C_7 = \overline{C_5}$ \msk Use os grids da página 4. Indique claramente qual desenho é a resposta de cada item e quais desenhos são rascunhos. }\anothercol{ % «questao-2» (to ".questao-2") % (c3m222p2p 2 "questao-2") % (c3m222p2a "questao-2") {\Large \bf Questão 2} \ssk \T(Total: 2.5 pts) \msk Sejam: % $$\begin{array}{rcl} z &=& (x-x_0)^4 (y-y_0)^6, \\ α &=& x+y, \\ β &=& x-y, \\ w &=& (α^3-α)+β^2. \\ \end{array} $$ Nesta questão eu vou ver principalmente quais dos truques da ``notação de físicos'' você sabe usar direito. \msk A página 5 tem um monte de dicas de ``notação de físicos'' que você pode usar como referência. A coluna da esquerda dessa página tem um exemplo grande que nós vimos em aula; a parte de cima da coluna da direita tem uma tabela que eu copiei da página 275 do Leithold, na qual ele mostra como reescrever certas regras de derivação usando diferenciais; e a parte de baixo da coluna da direita é uma versão adaptada do primeiro exemplo do capítulo XVI do Silvanus Thompson, em que ele mostra como fazer contas ficarem menores criando variáveis dependentes novas. \msk Calcule: a) \B (0.2 pts) $\frac{dz}{dx}$, b) \B (0.3 pts) $z_{xx}$, c) \B (0.5 pts) $dz$, d) \B (1.5 pts) $dw$. \msk No item c tente chegar até uma expressão da forma $z_xdx + z_ydy$, e no item d tente chegar até uma expressão da forma forma $w_xdx + w_ydy$. }} \newpage % «questao-3» (to ".questao-3") % (c3m222p2p 3 "questao-3") % (c3m222p2a "questao-3") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {\Large \bf Questão 3} \ssk \T(Total: 3.0 pts) \msk Sejam % $$\begin{array}{rcl} z(x,y) &=& dx^2 + exy + fy^2, \\ h(x) &=& z(x,1). \\ \end{array} $$ Vou dizer que a função $h(x,y)$ é a ``função homogênea de grau 2 associada a $h(x)$''. \msk a) \B (1.5 pts) Digamos que % $$h(x) = -2(x-1)(x+1).$$ % Faça o diagrama de sinais da $h(x)$ (em $\R$), os numerozinhos da função $z(x,y)$ nos pontos com $y=1$ e $x∈\{-2,-1,0,1,2\}$ (siiiim, só 5 pontos!) e o diagrama de sinais da função $z(x,y)$ (em $\R^2$), e diga se o ponto $(0,0)$ é um mínimo, máximo, ponto de sela, etc, etc. \msk b) \B (1.5 pts) Agora digamos que % $$h(x) = (x-i)(x+i) = x^2+1.$$ % Faça as mesmas coisas para esta função $h(x)$ e para a função $z(x,y)$ associada a ela. }\anothercol{ % «questao-4» (to ".questao-4") % (c3m222p2p 3 "questao-4") % (c3m222p2a "questao-4") {\Large \bf Questão 4} \ssk \T(Total: 3.0 pts) \msk Sejam: % $$\begin{array}{rcl} H(x,y) &=& xy, \\ E(x,y) &=& x^2 + 4y^2, \\ D &=& E^{-1}([0,16]), \\ F &:& D \to \R \\ && (x,y) \mapsto H(x,y) \\ % A &=& \setofxyst{x,y∈\{-2,-1,0,1,2\}} \\ \end{array} $$ Agora só queremos olhar pro que acontece dentro do ``domínio'' $D$, que é uma elipse; note que a função $F(x,y)$ só está definida em $D$. Faça pelo menos 5 curvas de nível de $z=F(x,y)$ (obs: só dentro da elipse!!!) e mostre no seu gráfico quais dos pontos de $D$ são máximos locais, mínimos locais ou pontos de sela. }} % * (eepitch-maxima) % * (eepitch-kill) % * (eepitch-maxima) % z : (x-x0)^4 * (y-y0^6); % diff(z,x); % diff(z,x,2); % aa : x+y; % bb : x-y; \newpage % «grids» (to ".grids") % (c3m222p2p 4 "grids") % (c3m222p2a "grids") \unitlength=10pt \def\Gr{\scalebox{1.2}{$\ga{grid Q1}$}} $\begin{matrix} \Gr & \Gr & \Gr & \Gr & \Gr \\ \Gr & \Gr & \Gr & \Gr & \Gr \\ \Gr & \Gr & \Gr & \Gr & \Gr \\ \Gr & \Gr & \Gr & \Gr & \Gr \\ \end{matrix} $ \newpage % ____ _ _ _ __ __ % | _ \(_) ___ __ _ ___ __| (_)/ _|/ _|___ % | | | | |/ __/ _` / __| / _` | | |_| |_/ __| % | |_| | | (_| (_| \__ \ | (_| | | _| _\__ \ % |____/|_|\___\__,_|___/ \__,_|_|_| |_| |___/ % % «dicas-diferenciais» (to ".dicas-diferenciais") % (c3m222p2p 5 "dicas-diferenciais") % (c3m222p2a "dicas-diferenciais") \sa{myexample-body}{ z &=& (x^3 + y^4)^5 \\ \\[-7pt] \frac{∂z}{∂x} &=& \frac{∂}{∂x}(x^3+y^4)^5 \\ &=& 5(x^3 + y^4)^4 \frac{∂}{∂x}(x^3+y^4) \\ &=& 5(x^3 + y^4)^4 (\frac{∂}{∂x}x^3+\frac{∂}{∂x}y^4) \\ &=& 5(x^3 + y^4)^4 (3x^2) \\ \\[-7pt] \frac{∂z}{∂y} &=& \frac{∂}{∂y}(x^3+y^4)^5 \\ &=& 5(x^3 + y^4)^4 \frac{∂}{∂y}(x^3+y^4) \\ &=& 5(x^3 + y^4)^4 (\frac{∂}{∂y}x^3+\frac{∂}{∂y}y^4) \\ &=& 5(x^3 + y^4)^4 (4y^3) \\ \\[-7pt] dz &=& 5(x^3 + y^4)^4 \, d(x^3+y^4) \\ &=& 5(x^3 + y^4)^4 (dx^3+dy^4) \\ &=& 5(x^3 + y^4)^4 (3x^2 \, dx + 4y^3 \, dy) \\ &=& 5(x^3 + y^4)^4 (3x^2) dx + 5(x^3 + y^4)^4 (4y^3) dy \\ \\[-7pt] dz &=& z_x dx + z_y dy \\ } \sa{leithold-body}{ \frac{d(c)}{dx} &=& 0 \\ \frac{d(x^n)}{dx} &=& nx^{n-1} \\ \frac{d(cu)}{dx} &=& c\frac{du}{dx} \\ \frac{d(u+v)}{dx} &=& \frac{du}{dx} + \frac{dv}{dx} \\ \frac{d(uv)}{dx} &=& u\frac{dv}{dx} + v\frac{du}{dx} \\ \frac{d(\frac{u}{v})}{dx} &=& \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \\ \frac{d(u^n)}{dx} &=& nu^{n-1} \frac{du}{dx} \\ \\[-7pt] } \sa{leithold-body2}{ d(c) &=& 0 \\ d(x^n) &=& nx^{n-1}dx \\ d(cu) &=& c\,du \\ d(u+v) &=& du+dv \\ d(uv) &=& u\,dv + v\,du \\ d(\frac{u}{v}) &=& \frac{v\,du - u\,dv}{v^2} \\ d(u^n) &=& nu^{n-1} du \\ } \sa{thompson-body}{ y &=& (x^2+a^2)^{3/2} \\ u &=& x^2+a^2 \\ du &=& 2x\,dx \\ dy &=& d((x^2+a^2)^{3/2}) \\ &=& d(u^{3/2}) \\ &=& u^{1/2}\,du \\ &=& u^{1/2}·2x\,dx \\ &=& (x^2+a^2)^{1/2}·2x\,dx \\ } \scalebox{0.65}{\def\colwidth{9cm}\firstcol{ \msk $\begin{array}{rcl} \ga{myexample-body} \end{array} %\qquad \hspace*{-1cm} \begin{array}{c} \begin{array}{rcl} \ga{leithold-body} \end{array} \quad \begin{array}{rcl} \ga{leithold-body2} \end{array} \\ \\ \begin{array}{rcl} \ga{thompson-body} \end{array} \end{array} $ }\anothercol{ }} \newpage % «questao-1-gab» (to ".questao-1-gab") % «questao-2-gab» (to ".questao-2-gab") % (c3m222p2p 6 "questao-2-gab") % (c3m222p2a "questao-2-gab") \def\dzdx{\frac{dz}{dx}} \def\und#1#2{\underbrace{#1}_{#2}} \scalebox{0.55}{\def\colwidth{10.5cm}\firstcol{ {\bf \Large Questão 2: gabarito} \bsk $\begin{array}[t]{lrcl} \text{Temos:} & z &=& (x-x_0)^4 (y-y_0)^6 \\ \text{Sejam:} & u &=& x-x_0, \\ & v &=& y-y_0. \\ \\[-5pt] \text{Então:} & z &=& u^4 v^6, \\ & \dzdx &=& \ddx(u^4)v^6 + u^4\ddx(v^6) \\ &&=& (4u^3\ddx u)v^6 + u^4(6v^5\ddx v) \\ &&=& (4u^3\ddx(x-x_0))v^6 + u^4(6v^5\ddx(y-y_0)) \\ &&=& 4u^3v^6 \\ &&=& 4(x-x_0)^3(y-y_0)^6, \\ \\[-5pt] & z_{xx} &=& \ddx \ddx z \\ &&=& \ddx (4u^3v^6) \\ &&=& 4(\ddx(u^3)v^6 + u^3\ddx(v^6)) \\ &&=& 4(\ddx(u^3)v^6) \\ &&=& 4(3u^2\ddx(u)v^6) \\ &&=& 4(3u^2v^6) \\ &&=& 12u^2v^6 \\ &&=& 12(x-x_0)^2(y-y_0)^6, \\ \\[-5pt] & dz &=& d(u^4v^6) \\ &&=& d(u^4)v^6 + u^4d(v^6) \\ &&=& (4u^3du)v^6 + u^4(6v^5dv) \\ &&=& (4u^3v^6)dx + (6u^4v^5)dy \\ &&=& 4(x-x_0)^3(y-y_0)^6dx + 6(x-x_0)^4(y-y_0)^5dy \\ %\text{Obs:} \end{array} $ }\anothercol{ \vspace*{0.5cm} $\begin{array}[t]{lrcl} \text{Temos:} & α &=& x+y, \\ & β &=& x-y, \\ & w &=& (α^3-α)+β^2. \\ \\[-5pt] \text{Então:} & dw &=& d(α^3+α) + d(β^2) \\ &&=& (2α+1)dα + 2βdβ \\ &&=& (2α+1)d(x+y) + 2βd(x-y) \\ &&=& (2α+1)(dx+dy) + 2β(dx-dy) \\ &&=& (2α+1+2β)dx + (2α+1-2β)dy \\ &&=& (2(x+y)+1+2(x-y))dx \\ &&+& (2(x+y)+1-2(x-y))dy \\ &&=& (4x+1)dx + (4y+1)dx \\ \end{array} $ }} \newpage % «questao-3-gab» (to ".questao-3-gab") % «questao-4-gab» (to ".questao-4-gab") \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2022.2-C3/") # (find-fline "~/LATEX/2022-2-C3/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2022.2-C3/ cp -fv $1.pdf ~/LATEX/2022-2-C3/ cat <<%%% % (find-latexscan-links "C3" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2022-2-C3-P2 veryclean make -f 2019.mk STEM=2022-2-C3-P2 pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c3p2" % ee-tla: "c3m222p2" % End: