Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2022-2-C2-mathologermovel.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2022-2-C2-mathologermovel.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2022-2-C2-mathologermovel.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2022-2-C2-mathologermovel.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2022-2-C2-mathologermovel.pdf")) % (defun e () (interactive) (find-LATEX "2022-2-C2-mathologermovel.tex")) % (defun o () (interactive) (find-LATEX "2022-2-C2-mathologermovel.tex")) % (defun u () (interactive) (find-latex-upload-links "2022-2-C2-mathologermovel")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2022-2-C2-mathologermovel.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2022-2-C2-mathologermovel") % (find-pdf-page "~/LATEX/2022-2-C2-mathologermovel.pdf") % (find-sh0 "cp -v ~/LATEX/2022-2-C2-mathologermovel.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2022-2-C2-mathologermovel.pdf /tmp/pen/") % (find-xournalpp "/tmp/2022-2-C2-mathologermovel.pdf") % file:///home/edrx/LATEX/2022-2-C2-mathologermovel.pdf % file:///tmp/2022-2-C2-mathologermovel.pdf % file:///tmp/pen/2022-2-C2-mathologermovel.pdf % http://angg.twu.net/LATEX/2022-2-C2-mathologermovel.pdf % (find-LATEX "2019.mk") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Piecewise1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v Pict2e1.lua Pict2e1-1.lua Pict3D1.lua ~/LATEX/") % (find-sh0 "cd ~/LUA/; cp -v C2Subst1.lua C2Formulas1.lua ~/LATEX/") % (find-CN-aula-links "2022-2-C2-mathologermovel" "2" "c2m222mm" "c2mm") % «.defs» (to "defs") % «.title» (to "title") % «.item-1» (to "item-1") % «.item-2» (to "item-2") % «.item-3» (to "item-3") % «.item-4» (to "item-4") % «.item-5» (to "item-5") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c2m222mm" "2022-2-C2-mathologermovel") % (code-eevvideo "c2m222mm" "2022-2-C2-mathologermovel") % (code-eevlinksvideo "c2m222mm" "2022-2-C2-mathologermovel") % (find-c2m222mmvideo "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L dofile "QVis1.lua" -- (find-LATEX "QVis1.lua") %L dofile "Pict3D1.lua" -- (find-LATEX "Pict3D1.lua") %L dofile "C2Formulas1.lua" -- (find-LATEX "C2Formulas1.lua") %L Pict2e.__index.suffix = "%" \pu \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\u#1{\par{\footnotesize \url{#1}}} \def\drafturl{http://angg.twu.net/LATEX/2022-2-C2.pdf} \def\drafturl{http://angg.twu.net/2022.2-C2.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c2m222mmp 1 "title") % (c2m222mma "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 2 - 2022.2} \bsk Aula 2: derivação e integração com o Mathologermóvel \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://angg.twu.net/2022.2-C2.html} \end{center} \newpage % (c2m221p1p 7 "escadas-defs") % (c2m221p1a "escadas-defs") %L hx = function (x, y) return format(" (%s,%s)c--(%s,%s)o", x-1,y, x,y) end %L hxs = function (ys) %L local str = "" %L for x,y in ipairs(ys) do str = str .. hx(x, y) end %L return str %L end %L mtintegralspec = function (specf, xmax, y0) %L local pws = PwSpec.from(specf) %L local f = pws:fun() %L local ys = {[0] = y0} %L for x=1,xmax do %L PP("FOO", x, f(x-0.5), ys) %L ys[x] = ys[x - 1] + f(x - 0.5) %L end %L local strx = function (x) return tostring(v(x, ys[x])) end %L local specF = mapconcat(strx, seq(0, xmax), "--") %L return specF %L end %L %L ysf = {1, 2, 1, 0, -1, -2, -1, 0, 1, 2, 1, 0} %L specf = hxs(ysf) %L ysg = {0, 1, 2, 3, -2, -1, 0, -1, -2, 3, 2, 1, 0} %L specg = hxs(ysg) %L specF = mtintegralspec(specf, #ysf, 0) %L specG = mtintegralspec(specf, #ysf, -3) %L specI = mtintegralspec(specg, #ysg, 0) %L pwsf = PwSpec.from(specf) %L pwsg = PwSpec.from(specg) %L pwsF = PwSpec.from(specF) %L pwsG = PwSpec.from(specG) %L pwsI = PwSpec.from(specI) %L pf = pwsf:topict():setbounds(v(0,-2), v(#ysf,2)):pgat("pgatc") %L pg = pwsg:topict():setbounds(v(0,-2), v(#ysg,3)):pgat("pgatc") %L pF = pwsF:topict():setbounds(v(0,-0), v(#ysf,4)):pgat("pgatc") %L pG = pwsG:topict():setbounds(v(0,-3), v(#ysf,1)):pgat("pgatc") %L pI = pwsI:topict():setbounds(v(0,0), v(#ysg,6)):pgat("pgatc") %L pf:sa("Fig f"):output() %L pg:sa("Fig g"):output() %L pF:sa("Fig F"):output() %L pG:sa("Fig G"):output() %L pI:sa("Fig I"):output() %L %L PictList{}:setbounds(v(0,-4),v(13,4)):pgat("pgatc"):sa("respgrid"):output() %L %L mtintegralspec2 = function (x0, y0, Dys, dot0, dot1) %L local mkxy = function (x,y) return format("(%d,%d)", x, y) end %L local xys = { mkxy(x0,y0) .. (dot0 or "") } %L local x,y = x0,y0 %L for i,Dy in ipairs(Dys) do %L x = x + 1 %L y = y + Dy %L table.insert(xys, mkxy(x,y)) %L end %L xys[#xys] = xys[#xys] .. (dot1 or "") %L return table.concat(xys, "--") %L end %L %L -- = mtintegralspec2(10, 20, {1, 2, -3, -3}, "a", "b") %L ysf = {1, 2, 1, 0, -1, -2, -1, 0, 1, 2, 1, 0} %L ysf_ = {1, 2, 1, 0, -1, -2, -1} %L ysg = {0, 1, 2, 3, -2, -1, 0, -1, -2, 3, 2, 1, 0} %L ysg_ = {-1, -2, 3, 2, 1} %L specH = mtintegralspec2(0, -4, ysf_, "", "o\n") .. %L mtintegralspec2(7, 1, ysg_, "o", "") %L specM = mtintegralspec2(0, -4, ysf_, "", "o\n") .. %L mtintegralspec2(7, 2, ysg_, "o", "") %L -- = specH %L -- = specM %L pwsH = PwSpec.from(specH) %L pwsM = PwSpec.from(specM) %L pH = pwsH:topict():setbounds(v(0,-4), v(12,4)):pgat("pgatc") %L pM = pwsM:topict():setbounds(v(0,-4), v(12,5)):pgat("pgatc") %L pH:sa("Fig H"):output() %L pM:sa("Fig M"):output() \pu \newpage Este PDF vai ser refeito depois! Por enquanto: \msk % ___ _ _ ____ % |_ _| |_ ___ _ __ ___ / | ___ |___ \ % | || __/ _ \ '_ \/ __| | | / _ \ __) | % | || || __/ | | \__ \ | | | __/ / __/ % |___|\__\___|_| |_|___/ |_| \___| |_____| % % «item-1» (to ".item-1") % (c2m222mmp 2 "item-1") % (c2m222mma "item-1") 1) assista a parte do vídeo do Mathologer sobre como usar um carro pra derivar e integrar --- essa parte começa no 3:12. Link: \ssk {\footnotesize % http://angg.twu.net/mathologer-calculus-easy.html#03:08 \url{http://angg.twu.net/mathologer-calculus-easy.html\#03:08} } \ssk Repare que ele sempre põe o gráfico da distância em cima e o gráfico da velocidade embaixo; quando ele fala de derivação ele começa com uma função ``original'', $f$, em cima e ele desenha, ou escreve, a derivada dela, $f'$, embaixo. \msk % «item-2» (to ".item-2") % (c2m222mmp 2 "item-2") % (c2m222mma "item-2") 2) O Leithold define a inclinação de uma reta na página 17 (no capítulo 1) e na página 150 (no capítulo 3) ele discute a derivada da função $|x|$. Leia estes trechos. % (find-books "__analysis/__analysis.el" "leithold") % (find-leitholdptpage (+ 17 17) "inclinação") % (find-leitholdptpage (+ 17 150) "|x|") \newpage % ___ _ _____ % |_ _| |_ ___ _ __ ___ |___ / % | || __/ _ \ '_ ` _ \ |_ \ % | || || __/ | | | | | ___) | % |___|\__\___|_| |_| |_| |____/ % % «item-3» (to ".item-3") % (c2m222mmp 3 "item-3") % (c2m222mma "item-3") {\bf Item 3} \ssk Considere que a função $G(x)$ do exercício 4 daqui \ssk {\footnotesize % (c2m221tfc1p 10 "exercicio-4") % (c2m221tfc1a "exercicio-4") % http://angg.twu.net/LATEX/2022-1-C2-TFC1.pdf#page=10 \url{http://angg.twu.net/LATEX/2022-1-C2-TFC1.pdf#page=10} } \ssk é um gráfico da posição do mathologermóvel no tempo. Copie esse gráfico num papel e abaixo dele faça o gráfico correspondente da velocidade do mathologermóvel no tempo. \msk Tem uma espécie de gabarito desse exercício aqui: \ssk {\footnotesize % (c2m212mt3p 4 "gabarito") % (c2m212mt3a "gabarito") % http://angg.twu.net/LATEX/2021-2-C2-MT3.pdf#page=4 \url{http://angg.twu.net/LATEX/2021-2-C2-MT3.pdf#page=4} } \newpage % ___ _ _ _ % |_ _| |_ ___ _ __ ___ | || | % | || __/ _ \ '_ ` _ \ | || |_ % | || || __/ | | | | | |__ _| % |___|\__\___|_| |_| |_| |_| % % «item-4» (to ".item-4") % (c2m222mmp 4 "item-4") % (c2m222mma "item-4") {\bf Item 4} \scalebox{0.9}{\def\colwidth{12.5cm}\firstcol{ Na P1 do semestre passado --- link: \ssk {\footnotesize % (c2m221p1p 7 "escadas") % (c2m221p1a "escadas") % http://angg.twu.net/LATEX/2022-1-C2-P1.pdf#page=7 \url{http://angg.twu.net/LATEX/2022-1-C2-P1.pdf\#page=7} } \ssk eu defini as funções $f(x)$ e $g(x)$ desta forma: \unitlength=9pt \bsk $f(x) = \ga{Fig f} \qquad g(x) = \ga{Fig g} $ % $ % \ga{Fig F} % \ga{Fig G} % \ga{Fig I} % \ga{Fig M} % $ \msk Interprete esses gráficos da $f(x)$ e da $g(x)$ como dois gráficos diferentes da velocidade do mathologermóvel no tempo. Copie elas num papel e acima de cada um deles faça o gráfico correspondente da posição do mathologermóvel no tempo. \msk Tem uma espécie de gabarito disso aqui: \ssk {\footnotesize % (c2m221p1p 8 "escadas-gab") % (c2m221p1a "escadas-gab") % http://angg.twu.net/LATEX/2022-1-C2-P1.pdf#page=8 \url{http://angg.twu.net/LATEX/2022-1-C2-P1.pdf\#page=8} } }\anothercol{ }} \newpage % ___ _ ____ % |_ _| |_ ___ _ __ ___ | ___| % | || __/ _ \ '_ ` _ \ |___ \ % | || || __/ | | | | | ___) | % |___|\__\___|_| |_| |_| |____/ % % «item-5» (to ".item-5") % (c2m222mmp 5 "item-5") % (c2m222mma "item-5") {\bf Item 5} \ssk Faça o exercício 1 daqui: \ssk {\footnotesize % (c2m221tfc1p 7 "exercicio-1") % (c2m221tfc1a "exercicio-1") % http://angg.twu.net/LATEX/2022-1-C2-TFC1.pdf#page=7 \url{http://angg.twu.net/LATEX/2022-1-C2-TFC1.pdf\#page=7} } \ssk Pra fazer ele você vai ter que interpretar o gráfico da $f(x)$ como um gráfico de velocidade, e você vai que interpretar expressões como esta aqui % $$\Intx{1.5}{2}{f(x)}$$ % como o quanto a posição do mathologermóvel varia entre o ``instante inicial'', que é $t=1.5$, e o ``instante final'', que é $t=2$. % (find-TH "mathologer-calculus-easy" "legendas") % (find-TH "mathologer-calculus-easy" "legendas" "03:08") %\printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2022-2-C2-mathologermovel veryclean make -f 2019.mk STEM=2022-2-C2-mathologermovel pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c2mm" % ee-tla: "c2m222mm" % End: