Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2025-1-C3-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2025-1-C3-P1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2025-1-C3-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2025-1-C3-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2025-1-C3-P1.pdf")) % (defun e () (interactive) (find-LATEX "2025-1-C3-P1.tex")) % (defun o () (interactive) (find-LATEX "2024-2-C3-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2025-1-C3-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2025-1-C3-P1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun oe () (interactive) (find-2a '(o) '(e))) % (code-eec-LATEX "2025-1-C3-P1") % (find-pdf-page "~/LATEX/2025-1-C3-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2025-1-C3-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2025-1-C3-P1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2025-1-C3-P1.pdf") % file:///home/edrx/LATEX/2025-1-C3-P1.pdf % file:///tmp/2025-1-C3-P1.pdf % file:///tmp/pen/2025-1-C3-P1.pdf % http://anggtwu.net/LATEX/2025-1-C3-P1.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2 Maxima2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2") % (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2") % (find-MM-aula-links "2025-1-C3-P1" "3" "c3m251p1" "c3p1") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-maxima» (to "defs-maxima") % «.defs-V» (to "defs-V") % «.title» (to "title") % «.links» (to "links") % «.questao-1» (to "questao-1") % «.questao-1a» (to "questao-1a") % «.questao-1b» (to "questao-1b") % «.questao-1f» (to "questao-1f") % «.questao-1g» (to "questao-1g") % «.questao-2» (to "questao-2") % «.questao-2a» (to "questao-2a") % «.gab-1» (to "gab-1") % «.gab-2» (to "gab-2") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-LATEX "dednat7-test1.tex") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2025-1-C3.pdf} \def\drafturl{http://anggtwu.net/2025.1-C3.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2024-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2024-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat7load.lua"} % (find-LATEX "dednat7load.lua") \directlua{dednat7preamble()} % (find-angg "LUA/DednatPreamble1.lua") \directlua{dednat7oldheads()} % (find-angg "LUA/Dednat7oldheads.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L --dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs-maxima» (to ".defs-maxima") %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") \pu % «defs-V» (to ".defs-V") %L --- See: (find-angg "LUA/MiniV1.lua" "problem-with-V") %L V = MiniV %L v = V.fromab \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c3m251p1p 1 "title") % (c3m251p1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 3 - 2025.1} \bsk P1 (primeira prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2025.1-C3.html} \end{center} \newpage % «links» (to ".links") % (c3m251p1p 2 "links") % (c3m251p1a "links") {\bf Links} \scalebox{0.6}{\def\colwidth{16cm}\firstcol{ }\anothercol{ }} \newpage % «questao-1» (to ".questao-1") % (c3m251p1p 3 "questao-1") % (c3m251p1a "questao-1") % (c3m242p1p 3 "questao-1") % (c3m242p1a "questao-1") % (c3m241p1p 3 "questao-1") % (c3m241p1a "questao-1") {\bf Questão 1} \scalebox{0.5}{\def\colwidth{10cm}\firstcol{ \vspace*{-0.5cm} \T(Total: 5.5 pts) O diagrama de numerozinhos da última folha da prova corresponde a uma superfície $z=F(x,y)$ que tem 7 faces. Também é possível interpretá-lo como uma superfície com 8 ou mais faces, mas vamos considerar que a superfície com só 7 faces é que é a correta. \msk % «questao-1a» (to ".questao-1a") % (c3m251p1p 3 "questao-1a") % (c3m251p1a "questao-1a") a) \B (0.5 pts) Mostre como dividir o plano em 7 polígonos que são as projeções destas faces no plano do papel. \msk % «questao-1b» (to ".questao-1b") % (c3m251p1p 3 "questao-1b") % (c3m251p1a "questao-1b") b) \B (0.5 pts) Chame estas faces de face W (``oeste''), E (``leste''), NW (``noroeste''), NE (``nordeste''), SW (``sudoeste''), SE (``Sudeste'') e C (``centro''), e chame as equações dos planos delas de $F_{W}(x,y)$, $F_{E}(x,y)$, $F_{NW}(x,y)$, $F_{NE}(x,y)$, $F_{SW}(x,y)$, $F_{SE}(x,y)$ e $F_{C}(x,y)$. Dê as equações destes planos. \msk c) \B (0.5 pts) Sejam: % $$\begin{array}{rcl} P_{C} &=& \setofxyzst{z = F_{C}(x,y)}, \\ P_{NW} &=& \setofxyzst{z = F_{NW}(x,y)}, \\ r &=& P_{C} ∩ P_{NW}. \\ \end{array} $$ Represente a reta $r$ graficamente como numerozinhos. \msk d) \B (0.5 pts) Dê uma parametrização para a reta do item anterior. Use notação de conjuntos. }\anothercol{ {} e) \B (0.5 pts) Seja % $$A \;=\; \{0,1,\ldots,10\} × \{0,1,\ldots,6\};$$ note que os numerozinhos do diagrama de numerozinhos estão todos sobre pontos de $A$. Para cada ponto $(x,y)∈A$ represente graficamente $(x,y)+\frac13 \vec∇F(x,y)$. \ssk Obs: quando $\vec∇F(x,y)=0$ desenhe uma bolinha preta sobre o ponto $(x,y)$, e quando $\vec∇F(x,y)$ não existir faça um `$×$' sobre o numerozinho que está no ponto $(x,y)$. \msk % «questao-1f» (to ".questao-1f") % (c3m251p1p 3 "questao-1f") % (c3m251p1a "questao-1f") f) \B (1.5 pts) Sejam % $$\begin{array}{rcl} Q(t) &=& \begin{cases} (1,5) + t \VEC{1,-2} & \text{quando $t<3$}, \\ (5,2) + (t-3)\VEC{2, 1} & \text{quando $3≤t$}, \\ \end{cases} \\ (x(t),y(t)) &=& Q(t), \\ h(t) &=& F(x(t),y(t)). \\ \end{array} $$ Faça o gráfico da função $h(t)$. Considere que o domínio dela é o intervalo $[0,6]$. \msk % «questao-1g» (to ".questao-1g") % (c3m251p1p 3 "questao-1g") % (c3m251p1a "questao-1g") g) \B (1.5 pts) Dê uma ``definição por casos'' pra função $h(t)$ que você obteve no item anterior. Repare que a $Q(t)$ do item anterior é definida por casos. }} \newpage % ___ _ ____ % / _ \ _ _ ___ ___| |_ __ _ ___ |___ \ % | | | | | | |/ _ \/ __| __/ _` |/ _ \ __) | % | |_| | |_| | __/\__ \ || (_| | (_) | / __/ % \__\_\\__,_|\___||___/\__\__,_|\___/ |_____| % % «questao-2» (to ".questao-2") % (c3m251p1p 4 "questao-2") % (c3m251p1a "questao-2") % (c3m222p1p 4 "questao-2") % (c3m222p1a "questao-2") % (to "gab-2") {\bf Questão 2} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \vspace*{-0.5cm} \T(Total: 4.5 pts) Seja % $$F(x,y) = (x+2)(x-y)(y+2).$$ Nesta questão você vai ter que fazer várias cópias do diagrama de numerozinhos da função $F(x,y)$ para os pontos com $x,y∈\{-2,-1,0,1,2\}$. % Os numerozinhos vão ser estes aqui: % % % $$\begin{array}{rrrrr} % 8 & 0 & -4 & -4 & 0 \\ % 9 & 2 & -1 & 0 & 5 \\ % 8 & 2 & 0 & 2 & 8 \\ % 5 & 0 & -1 & 2 & 9 \\ % 0 & -4 & -4 & 0 & 8 \\ % \end{array} % $$ \msk % «questao-2a» (to ".questao-2a") % (c3m251p1p 4 "questao-2a") % (c3m251p1a "questao-2a") a) \B (1.0 pts) Desenhe o ``campo gradiente'' da função $F$ nestes pontos, mas multiplicando cada $\vec∇F(x,y)$ por $\frac{1}{10}$ pros vetores não ficarem uns em cima dos outros. Deixa eu traduzir isso pra termos mais básicos: faça uma cópia do diagrama de numerozinhos da $F(x,y)$, e sobre cada $(x,y)$ com $x,y∈\{-2,-1,0,1,2\}$ desenhe a seta $(x,y)+\frac{1}{10}\vec∇F(x,y)$. \msk b) \B (3.5 pts) Faça uma outra cópia desse diagrama de numerozinhos e desenhe sobre ela as curvas de nível da função $F(x,y)$ para $z=0$, $z=6$, $z=12$, $z=-6$ e $z=-12$. }\anothercol{ {} % \bsk {\bf Dicas:} 1) O vetor gradiente num ponto $(x,y)$ é sempre ortogonal à curva de nível que passa pelo ponto $(x,y)$. 2) Faça quantos rascunhos quiser. Eu só vou corrigir seus desenhos pros itens (a) e (b) que disserem ``versão final'', e eles têm que ser os mais caprichados possíveis. }} \newpage % «questao-2» (to ".questao-2") % (c3m242p1p 5 "questao-2") % (c3m242p1a "questao-2") % (find-es "maxima" "2024.2-C3-P1") % «questao-3» (to ".questao-3") % (c3m241p1p 4 "questao-3") % (c3m241p1a "questao-3") % (find-es "maxima" "2024-1-C3-P1-Q3") \newpage % «barranco-defs» (to ".barranco-defs") % (c3m251p1p 5 "barranco-defs") % (c3m251p1a "barranco-defs") % (find-angg "GNUPLOT/2025-1-C3-P1.dem") % (find-bgprocess "gnuplot ~/GNUPLOT/2025-1-C3-P1.dem") % (find-angg "MAXIMA/2025-1-C3-P1-Q1.mac" "gab") % (find-eepitch-intro "3.3. `eepitch-preprocess-line'") % (setq eepitch-preprocess-regexp "") % (setq eepitch-preprocess-regexp "^%?%L ?") % %%L * (eepitch-lua51) %%L * (eepitch-kill) %%L * (eepitch-lua51) %%L Path.prependtopath "~/LUA/?.lua" %L require "Cabos3" %L require "Numerozinhos1" %L PictBounds.setbounds(v(0,0), v(11,7)) %L %L bigstr1 = [[ %L 0 0 0 2 4 5 6 7 8 8 8 %L 0 0 0 2 4 5 6 7 8 8 8 %L 0 0 0 2 4 5 6 7 8 8 8 %L 0 0 0 2 3 4 5 6 8 8 8 %L 0 0 0 1 2 3 4 6 8 8 8 %L 0 0 0 1 2 3 4 6 8 8 8 %L 0 0 0 1 2 3 4 6 8 8 8 %L ]] %L bigstr2 = [[ %L 0 - 0 - A - 2 - B - 5 - 6 - 7 - C - 8 - 8 %L | . | . | . | . | . | . | . | . | . | . | %L 0 - 0 - 0 - 2 - 4 - 5 - 6 - 7 - 8 - 8 - 8 %L | . | . | . | . | . | . | . | . | . | . | %L 0 - 0 - 0 - 2 - D - 5 - 6 - 7 - E - 8 - 8 %L | . | . | . | / | . | . | . | / | . | . | %L 0 - 0 - 0 - 2 - 3 - 4 - 5 - 6 - 8 - 8 - 8 %L | . | . | / | . | . | . | / | . | . | . | %L 0 - 0 - F - 1 - 2 - 3 - G - 6 - 8 - 8 - 8 %L | . | . | . | . | . | . | . | . | . | . | %L 0 - 0 - 0 - 1 - 2 - 3 - 4 - 6 - 8 - 8 - 8 %L | . | . | . | . | . | . | . | . | . | . | %L 0 - 0 - H - 1 - 2 - 3 - I - 6 - J - 8 - 8 %L ]] %L clabels = CabosNaDiagonal.from(bigstr2) %L lbls = clabels.strgrid:labels() %L spec = lbls:subst("A--H B--D C--J G--I D--E--G--F--D") %L ns = Numerozinhos.from(0, 0, bigstr1) %L p1 = ns:show0 {u="25pt"}:sa("barranco") %L ns:setspec(spec) %L p2 = ns:show0():sa("barranco 2") %L p3 = Pict { p1, p2 } %L p4 = Pict { p1, p2, [[\ga{barranco} \ga{barranco com linhas}]] } %L p3:output() %L -- p4:output() %%L = p4:show("") %%L = Show.bigstr %%L * (etv) \pu % «questao-1-grids» (to ".questao-1-grids") % (c3m242p1p 4 "questao-1-grids") % (c3m242p1a "questao-1-grids") % (c3m241p1p 5 "questao-1-grids") % (c3m241p1a "questao-1-grids") \vspace*{-0.55cm} \def\barra{\scalebox{0.35}{\ga{barranco}}} \def\barras{\barra \quad \barra \quad \barra} $\begin{array}{l} \barras \\ \\[-5pt] \barras \\ \\[-5pt] \barras \\ \end{array} $ \newpage % «gab-1» (to ".gab-1") % (c3m251p1p 6 "gab-1") % (c3m251p1a "gab-1") % (find-angg "MAXIMA/2025-1-C3-P1-Q1.mac") \setcounter{MaxMatrixCols}{15} %M (%i4) item_c; %M (%o4) \begin{pmatrix}-2&\left[ 0 , 0 , -4 \right] \cr -1&\left[ 1 , 1 , -2 \right] \cr 0&\left[ 2 , 2 , 0 \right] \cr 1&\left[ 3 , 3 , 2 \right] \cr 2&\left[ 4 , 4 , 4 \right] \cr 3&\left[ 5 , 5 , 6 \right] \cr 4&\left[ 6 , 6 , 8 \right] \cr \end{pmatrix} %M (%i6) item_e; %M (%o6) \begin{pmatrix}\left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\left[ 2 , 0 \right] &\mbox{ X }&\left[ 1 , 0 \right] &\left[ 1 , 0 \right] &\left[ 1 , 0 \right] &\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\left[ 2 , 0 \right] &\mbox{ X }&\left[ 1 , 0 \right] &\left[ 1 , 0 \right] &\left[ 1 , 0 \right] &\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\left[ 2 , 0 \right] &\mbox{ X }&\mbox{ X }&\mbox{ X }&\mbox{ X }&\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\mbox{ X }&\left[ 1 , 1 \right] &\left[ 1 , 1 \right] &\left[ 1 , 1 \right] &\mbox{ X }&\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\mbox{ X }&\mbox{ X }&\mbox{ X }&\mbox{ X }&\left[ 2 , 0 \right] &\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\left[ 1 , 0 \right] &\left[ 1 , 0 \right] &\left[ 1 , 0 \right] &\mbox{ X }&\left[ 2 , 0 \right] &\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 0 \right] &\mbox{ X }&\left[ 1 , 0 \right] &\left[ 1 , 0 \right] &\left[ 1 , 0 \right] &\mbox{ X }&\left[ 2 , 0 \right] &\mbox{ X }&\left[ 0 , 0 \right] &\left[ 0 , 0 \right] \cr \end{pmatrix} %L maximahead:sa("P1-Q1", "") \pu %L -- (find-LATEX "2025-1-C3-P2.tex" "minidraw") %L PictBounds.setbounds(v(0,0), v(6,8)) %L PwSpec.from("(0,0)--(1,0)--(1.33,0.66)--(1.5,0.5)--(3,2)o (3,3)c--(4,6)--(4.5,8)--(6,8)") %L :topict():pgat("pgatc",{sa="1f"}):preunitlength("10pt") %L :output() \pu {\bf Questão 1: mini-gabarito} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ 1a) \;\; $\scalebox{1.0}{\ga{barranco 2}}$ \msk 1b) \;\; $ \def\myline#1#2{F_{#1}(x,y) &=& #2} \begin{array}{rcl} \myline {NW} {2x-4} \\ \myline {NE} {x} \\ \myline {SW} {x-2} \\ \myline {SE} {2x-8} \\ \myline {W} {0} \\ \myline {E} {8} \\ \myline {C} {y+x-4} \\ \end{array}$ \msk 1d) \;\; $r = \setofst{(2,2,0) + t\VEC{1,1,-2}}{t∈\R}$ \msk }\anothercol{ 1f) \;\; $\ga{1f}$ \msk 1g) \;\; $ \def\myline#1#2{#1 & \text{quando $#2$}} h(t) = \begin{cases} \myline {0} {t<1} \\ \myline {2t-2} {1≤t<4/3} \\ \myline {2-t} {4/3≤t<3/2} \\ \myline {t-1} {3/2≤t<3} \\ \myline {3t-6} {3≤t<4} \\ \myline {4t-10} {4≤t<9/2} \\ \myline {8} {9/2≤t} \\ \end{cases}$ }} \newpage \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{P1-Q1} }\anothercol{ \vspace*{0cm} \def\hboxthreewidth {14cm} \ga{P1-Q1 2} }} \newpage % «gab-2» (to ".gab-2") % (c3m251p1p 7 "gab-2") % (c3m251p1a "gab-2") % (to "questao-2") % (find-angg "MAXIMA/2025-1-C3-P1-Q2.mac" "gab") %M (%i1) map(numerozinhos, [F,gradF]); %M (%o1) \scalebox{0.8}{$\left[ \begin{pmatrix}0&-12&-16&-12&0\cr 0&-6&-6&0&12\cr 0&-2&0&6&16\cr 0&0&2&6&12\cr 0&0&0&0&0\cr \end{pmatrix} , \begin{pmatrix}\left[ -16 , 0 \right] &\left[ -8 , -7 \right] &\left[ 0 , -12 \right] &\left[ 8 , -15 \right] &\left[ 16 , -16 \right] \cr \left[ -9 , 0 \right] &\left[ -3 , -5 \right] &\left[ 3 , -8 \right] &\left[ 9 , -9 \right] &\left[ 15 , -8 \right] \cr \left[ -4 , 0 \right] &\left[ 0 , -3 \right] &\left[ 4 , -4 \right] &\left[ 8 , -3 \right] &\left[ 12 , 0 \right] \cr \left[ -1 , 0 \right] &\left[ 1 , -1 \right] &\left[ 3 , 0 \right] &\left[ 5 , 3 \right] &\left[ 7 , 8 \right] \cr \left[ 0 , 0 \right] &\left[ 0 , 1 \right] &\left[ 0 , 4 \right] &\left[ 0 , 9 \right] &\left[ 0 , 16 \right] \cr \end{pmatrix} \right]$} %M (%i2) setrange(2)$ %M (%i3) myqdrawp(xyrange(), item_b_grads); %M (%o3) \myvcenter{\includegraphics[height=5cm]{2025-1-C3/P1-Q2_001.pdf}} %M (%i4) myqdrawp(xyrange(), item_b_grads, item_b_curvas); %M (%o4) \myvcenter{\includegraphics[height=5cm]{2025-1-C3/P1-Q2_002.pdf}} %L maximahead:sa("P1-Q2", "") \pu {\bf Questão 2: mini-gabarito} \scalebox{0.4}{\def\colwidth{11cm}\firstcol{ \vspace*{0cm} \def\hboxthreewidth {12cm} \ga{P1-Q2} }\anothercol{ }} \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % (find-pdfpages2-links "~/LATEX/" "2025-1-C3-P1") % Local Variables: % coding: utf-8-unix % ee-tla: "c3p1" % ee-tla: "c3m251p1" % End: