Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2021-1-C3-matriz-jacobiana.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2021-1-C3-matriz-jacobiana.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2021-1-C3-matriz-jacobiana.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2021-1-C3-matriz-jacobiana.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2021-1-C3-matriz-jacobiana.pdf")) % (defun e () (interactive) (find-LATEX "2021-1-C3-matriz-jacobiana.tex")) % (defun o () (interactive) (find-LATEX "2021-1-C3-matriz-jacobiana.tex")) % (defun u () (interactive) (find-latex-upload-links "2021-1-C3-matriz-jacobiana")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2021-1-C3-matriz-jacobiana.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2021-1-C3-matriz-jacobiana") % (find-pdf-page "~/LATEX/2021-1-C3-matriz-jacobiana.pdf") % (find-sh0 "cp -v ~/LATEX/2021-1-C3-matriz-jacobiana.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2021-1-C3-matriz-jacobiana.pdf /tmp/pen/") % (find-xournalpp "/tmp/2021-1-C3-matriz-jacobiana.pdf") % file:///home/edrx/LATEX/2021-1-C3-matriz-jacobiana.pdf % file:///tmp/2021-1-C3-matriz-jacobiana.pdf % file:///tmp/pen/2021-1-C3-matriz-jacobiana.pdf % http://angg.twu.net/LATEX/2021-1-C3-matriz-jacobiana.pdf % (find-LATEX "2019.mk") % (find-CN-aula-links "2021-1-C3-matriz-jacobiana" "3" "c3m211j" "c3j") % «.video-1» (to "video-1") % «.video-2» (to "video-2") % «.defs» (to "defs") % «.title» (to "title") % «.exercicio-1» (to "exercicio-1") % «.preparacao-mini-teste» (to "preparacao-mini-teste") % «.mt-dica-contas» (to "mt-dica-contas") % % «.djvuize» (to "djvuize") % «video-1» (to ".video-1") % (c3m211ja "video-1") % (find-ssr-links "c3m211j" "2021-1-C3-matriz-jacobiana" "kMGtZk5er9w") % (code-eevvideo "c3m211j" "2021-1-C3-matriz-jacobiana" "kMGtZk5er9w") % (code-eevlinksvideo "c3m211j" "2021-1-C3-matriz-jacobiana" "kMGtZk5er9w") % (find-c3m211jvideo "0:00" "5/ago/2011") % % «video-2» (to ".video-2") % (c3m211ja "video-2") % (find-ssr-links "c3m211j2" "2021-1-C3-matriz-jacobiana-2" "D_YKka3RG9E") % (code-eevvideo "c3m211j2" "2021-1-C3-matriz-jacobiana-2" "D_YKka3RG9E") % (code-eevlinksvideo "c3m211j2" "2021-1-C3-matriz-jacobiana-2" "D_YKka3RG9E") % (find-c3m211j2video "0:00" "27/ago/2021") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} %\catcode`\^^J=10 %\directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % «defs» (to ".defs") % (find-LATEX "edrx15.sty" "colors-2019") %\long\def\ColorRed #1{{\color{Red1}#1}} %\long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} %\long\def\ColorViolet#1{{\color{Violet!50!black}#1}} %\long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} %\long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} %\long\def\ColorGreen #1{{\color{SpringGreen4}#1}} %\long\def\ColorGray #1{{\color{GrayLight}#1}} %\long\def\ColorGray #1{{\color{black!30!white}#1}} %\long\def\ColorBrown #1{{\color{Brown}#1}} %\long\def\ColorBrown #1{{\color{brown}#1}} %\long\def\ColorOrange#1{{\color{orange}#1}} % %\long\def\ColorShort #1{{\color{SpringGreen4}#1}} %\long\def\ColorLong #1{{\color{Red1}#1}} % %\def\frown{\ensuremath{{=}{(}}} %\def\True {\mathbf{V}} %\def\False{\mathbf{F}} %\def\D {\displaystyle} \def\C{\mathbb{C}} \def\drafturl{http://angg.twu.net/LATEX/2021-1-C3.pdf} \def\drafturl{http://angg.twu.net/2021.1-C3.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c3m211jp 1 "title") % (c3m211ja "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 3 - 2021.1} \bsk Aula 21: a matriz jacobiana \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://angg.twu.net/2021.1-C3.html} \end{center} \newpage Comece relendo o trecho ao redor da página 256 no capítulo 7 do Bortolossi... Hoje nós vamos ver dois jeitos de visualizar o que a matriz jacobiana quer dizer. \bsk Vamos trabalhar em cima de um exemplo só: a função que leva cada número complexo $z∈\C$ em $z^2∈\C$. \msk \ColorRed{Veja os vídeos!} \msk Vídeo 1: {\footnotesize \url{http://angg.twu.net/eev-videos/2021-1-C3-matriz-jacobiana.mp4} \url{https://www.youtube.com/watch?v=kMGtZk5er9w} } \ssk Vídeo 2: {\footnotesize \url{http://angg.twu.net/eev-videos/2021-1-C3-matriz-jacobiana-2.mp4} \url{https://www.youtube.com/watch?v=D_YKka3RG9E} } \newpage Porque a jacobiana de $w=z^2$ é desse jeito? $$\begin{array}{rcl} w &=& z^2 \\ z &=& x+iy \;\;=\;\; (x,y) \;\;=\;\; \psm{x \\ y} \\ w &=& a+ib \;\;=\;\; (a,b) \;\;=\;\; \psm{a \\ b} \\[5pt] \psm{a\\b} &=& w \\ &=& z^2 \\ &=& (x+iy)^2 \\ &=& x^2 + 2ixy + i^2y^2 \\ &=& x^2 + 2ixy - y^2 \\ &=& (x^2 - y^2) + i(2xy) \\ &=& (x^2 - y^2, 2xy) \;\;=\;\; \psm{x^2-y^2 \\ 2xy} \\ a &=& x^2 - y^2 \\ b &=& 2xy \\ \end{array} $$ \newpage Porque a jacobiana de $w=z^2$ é desse jeito? (2) $$\begin{array}{rcl} w_z Δz &=& \frac{d \psm{a\\b}}{d \psm{x\\y}} \pmat{Δx\\Δy} \\ &=& \pmat{a_x & a_y \\ b_x & b_y} \pmat{Δx\\Δy} \\ &=& \pmat{a_x Δx + a_y Δy \\ b_x Δx + b_y Δy} \\ &≈& \pmat{Δa \\ Δb} \\ &=& Δw \\ \end{array} $$ Se $w_x$ fosse $\pmat{a_x & b_x \\ a_y & b_y}$ ao invés de $\pmat{a_x & a_y \\ b_x & b_y}$ isso não daria certo. \newpage {\bf Duas figuras do ``Visual Complex Analysis'' do Needham} Do capítulo 4, páginas 190 e 191... % (find-latexscan-links "C3" "20210825_needham_fig1") % (find-xpdf-page "~/LATEX/2021-1-C3/20210825_needham_fig1.pdf") $$\includegraphics[height=3.0cm]{2021-1-C3/20210825_needham_fig1.pdf}$$ % % (find-latexscan-links "C3" "20210825_needham_fig2") % (find-xpdf-page "~/LATEX/2021-1-C3/20210825_needham_fig2.pdf") $$\includegraphics[height=3.0cm]{2021-1-C3/20210825_needham_fig2.pdf}$$ % (find-bortolossi7page (+ -238 256) "matriz jacobiana") % (find-books "__analysis/__analysis.el" "needham") % (find-needhampage (+ 21 189) "Differentiation: The Amplitwist") % (find-needhamtext (+ 21 189) "Differentiation: The Amplitwist") % (find-fline "~/2021.1-C3/" "20210825_needham_fig1.jpg") \newpage % «exercicio-1» (to ".exercicio-1") % (c3m211jp 6 "exercicio-1") % (c3m211ja "exercicio-1") {\bf Exercício 1.} Desenhe um plano pros valores de $z$, à esquerda, e um plano pros valores de $w=z^2$ à direita, como nas figuras do Needham. Desenhe no planos dos `$z$'s os 9 valores de $z$ que têm $x∈\{0,1,2\}$ e $y∈\{0,1,2\}$. Pra cada um desses 9 `$z$s calcule o `$w$ correspondente e desenhe ele no plano dos `$w$'s. \newpage % «preparacao-mini-teste» (to ".preparacao-mini-teste") % (c3m211jp 7 "preparacao-mini-teste") % (c3m211ja "preparacao-mini-teste") \thispagestyle{empty} \begin{center} \vspace*{1.5cm} \begin{tabular}{c} {\bf \Large Exercícios de} \\ {\bf \Large preparação pro} \\ {\bf \Large mini-teste} \\ \end{tabular} \end{center} \newpage No exercício 1 você descobriu as imagens pela função $z \mapsto w$ de 9 {\sl pontos}. Agora você vai descobrir as imagens de 9 {\sl retângulos}. \msk Sejam $α$ e $β$ dois reais positivos bem pequenos. Vamos fazer os desenhos todos à mão, então você pode usar $α=β=0.2$, ou $α=β=0.1$, algo assim --- basta que $α^2$ e $β^2$ sejam ``desprezíveis'' no sentido do Silvanus Thompson (e dos vídeos). \msk Em cada um dos 9 pontos você vai imaginar um retangulinho de lados $α$ e $iβ$ ``apoiado nele'', como o da figura do próximo slide... \newpage % (find-latexscan-links "C3" "20210827_rect_alpha_beta") % (find-xpdf-page "~/LATEX/2021-1-C3/20210827_rect_alpha_beta.pdf") $$\includegraphics[height=6.5cm]{2021-1-C3/20210827_rect_alpha_beta.pdf}$$ \newpage ...e você vai usar as derivadas pra encontrar uma {\sl aproximação bastante razoável} pra imagem do retangulinho apoiado em cada um dos 9 `$z_0$'s, e vai desenhar essa aproximação apoiada no $w_0$ correspondente a aquele $z_0$. \bsk \bsk O vídeo tem montes de explicações e dicas. Links: \msk {\scriptsize \url{http://angg.twu.net/eev-videos/2021-1-C3-matriz-jacobiana-2.mp4} \url{https://www.youtube.com/watch?v=D_YKka3RG9E} } \newpage % «mt-dica-contas» (to ".mt-dica-contas") % (c3m211jp 11 "mt-dica-contas") % (c3m211ja "mt-dica-contas") Se $γ=α+iβ$, então... (Veja o vídeo!!!) % $$\scalebox{0.9}{$ \begin{array}{rcl} w(z_0 + γ) &=& w(z_0 + (α+iβ)) \\ &=& w((x_0 + iy_0) + (α+iβ)) \\ &=& w((x_0 + α) + i(y_0 + β)) \\ &=& w(x_0 + α, y_0 + β) \\ &=& w(x_0 + α, y_0 + β) \\ &=& a(x_0 + α, y_0 + β) + ib(x_0 + α, y_0 + β) \\ &=& (a(x_0 + α, y_0 + β), b(x_0 + α, y_0 + β)) \\ &≈& (a + a_x α + a_y β, b + b_x α + b_y β) \\ &=& (a,b) + (a_x α + a_y β, b_x α + b_y β) \\ &=& (a,b) + \pmat{a_x & a_y \\ b_x & b_y} \pmat{α \\ β} \\ w(z_0 + γ) - w_0 &=& \pmat{a_x & a_y \\ b_x & b_y} \pmat{α \\ β} \\ \end{array} $} $$ \newpage {\bf Exercício 2.} Qual é a imagem pela função $z \mapsto z^2$ da figura abaixo? Note que o tamanho dos retangulinhos vai depender dos valores de $α$ e $β$ que você escolheu... % (find-latexscan-links "C3" "20210827_9_retangulinhos") % (find-xpdf-page "~/LATEX/2021-1-C3/20210827_9_retangulinhos.pdf") $$\includegraphics[height=5cm]{2021-1-C3/20210827_9_retangulinhos.pdf}$$ %\printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2021.1-C3/") # (find-fline "~/LATEX/2021-1-C3/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2021.1-C3/ cp -fv $1.pdf ~/LATEX/2021-1-C3/ cat <<%%% % (find-latexscan-links "C3" "$1") %%% } f 20210827_9_retangulinhos f 20210827_rect_alpha_beta f 20210825_needham_fig1 f 20210825_needham_fig2 f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2021-1-C3-matriz-jacobiana veryclean make -f 2019.mk STEM=2021-1-C3-matriz-jacobiana pdf % Local Variables: % coding: utf-8-unix % ee-tla: "c3j" % ee-tla: "c3m211j" % End: