Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2019modalities-in-S4.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2019modalities-in-S4.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2019modalities-in-S4.pdf")) % (defun e () (interactive) (find-LATEX "2019modalities-in-S4.tex")) % (defun u () (interactive) (find-latex-upload-links "2019modalities-in-S4")) % (find-pdf-page "~/LATEX/2019modalities-in-S4.pdf") % (find-sh0 "cp -v ~/LATEX/2019modalities-in-S4.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2019modalities-in-S4.pdf /tmp/pen/") % file:///home/edrx/LATEX/2019modalities-in-S4.pdf % file:///tmp/2019modalities-in-S4.pdf % file:///tmp/pen/2019modalities-in-S4.pdf % http://angg.twu.net/LATEX/2019modalities-in-S4.pdf % (find-LATEX "2019.mk") \documentclass[oneside]{book} \usepackage[colorlinks,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % See: % (find-LATEX "2015oppositions.tex") % (find-pdf-page "~/LATEX/2015oppositions.pdf") % https://mail.google.com/mail/ca/u/0/#search/from%3Ame+to%3Alogica-l%40dimap.ufrn.br+S4/FMfcgxcmtSzkBPKFSSsnPvknfTzGWtDz % https://mail.google.com/mail/ca/u/0/#search/from%3Ame+to%3Alogica-l%40dimap.ufrn.br+S4/FMfcgxmScvfJKvrHLmsWqHfTcGQCwBzq % (find-books "__modal/__modal.el" "chellas") % (find-es "googlegroups" "logica-l") % https://groups.google.com/a/dimap.ufrn.br/d/msg/logica-l/JxptOElKnI0/h-ZX6qmvDwAJ % https://groups.google.com/a/dimap.ufrn.br/forum/#!msg/logica-l/JxptOElKnI0/h-ZX6qmvDwAJ use this! % https://groups.google.com/a/dimap.ufrn.br/forum/#!topic/logica-l/UujFOXoKTy4 announcement, 2019sep18 % (ph1p 23 "topologies") % (ph1 "topologies") % (ph1 "topologies" "house") % (find-dn6 "zhas.lua" "MixedPicture-zset-tests") %L WB = "1.2.3|.4.5..67" %L mp = MixedPicture.new({def="dagWB", meta="s", scale="5pt"}):zfunction(WB):output() \pu % $\dagWB 1234567$ Let our Kripke frame $(W,R)$ be the transitive-reflexive closure of this: % %D diagram WB-frame %D 2Dx 100 +20 +20 +20 +20 +20 +20 %D 2D 100 1 2 3 %D 2D \ / \ / %D 2D v v v v %D 2D +20 4 5 6 <-> 7 %D 2D %D (( 1 4 -> 2 4 -> 2 5 -> 3 5 -> 6 7 <-> %D %D )) %D enddiagram %D $$\pu \diag{WB-frame} $$ % (find-LATEXgrep "grep --color -nH -e zdef *.tex") % (find-dednat6 "dednat6/zhas.lua" "mpnew") % 1 2 3 % \ / \ / % (W,R) = v v v v % 4 5 6<->7 % % = {(1,2,3,4,5,6,7), % {(1,4), (2,4), (2,5), (3,5), (6,7), (7,6)} % } % % v( P) = { 3,4, 7} % v( ◻P) = { 4 } % v( ⋄◻P) = {1,2, 4 } % v(◻⋄◻P) = {1, 4 } % v( ⋄P) = {1,2,3,4, 6,7} % v( ◻⋄P) = {1, 4, 6,7} % v(⋄◻⋄P) = {1,2, 4, 6,7} % % 1 1 1 % 1 0 11 % ^ ^ % / \ % / \ ⋄P % 1 1 0 \ ^ ^ % 1 0 11 \ / \ % ^ ^ \ ⋄◻⋄P \ % / \ \ ^ ^ \ % / \ \ / \ \ % 1 0 0 1 1 0 0 0 1 ◻⋄P ⋄◻P P % 1 0 11 1 0 00 1 0 01 ^ ^ ^ % ^ ^ ^ \ / / % \ / / ◻⋄◻P / % \ / / ^ / % 1 0 0 / \ / % 1 0 00 / ◻P % ^ / % \ / % \ / % 0 0 0 % 1 0 00 \bsk The diagram of S4 modalities from p.149 of Chellas and its values when $A=\{3,4,7\}⊆W$: % %D diagram S4-mods-A %D 2Dx 100 +20 +20 +40 %D 2D 100 DA %D 2D ^ ^ %D 2D / \ %D 2D +20 DBDA \ %D 2D ^ ^ \ %D 2D / \ \ %D 2D +20 DBA BDA A %D 2D ^ ^ ^ %D 2D \ / / %D 2D +20 BDBA / %D 2D ^ / %D 2D \ / %D 2D +20 BA %D 2D %D ren DA ==> ⋄A %D ren DBDA ==> ⋄◻⋄A %D ren DBA BDA A ==> ⋄◻A ◻⋄A A %D ren BDBA ==> ◻⋄◻A %D ren BA ==> ◻A %D %D (( DBDA DA -> %D DBA DBDA -> BDA DBDA -> %D BDBA DBA -> BDBA BDA -> %D BA BDBA -> %D A DA -> BA A -> %D )) %D enddiagram %D %D diagram S4-mods-v %D 2Dx 100 +20 +20 +40 %D 2D 100 DA %D 2D ^ ^ %D 2D / \ %D 2D +20 DBDA \ %D 2D ^ ^ \ %D 2D / \ \ %D 2D +20 DBA BDA A %D 2D ^ ^ ^ %D 2D \ / / %D 2D +20 BDBA / %D 2D ^ / %D 2D \ / %D 2D +20 BA %D 2D %D ren DA ==> \dagWB1111011 %D ren DBDA ==> \dagWB1101011 %D ren DBA BDA A ==> \dagWB1101000 \dagWB1001011 \dagWB0011001 %D ren BDBA ==> \dagWB1001000 %D ren BA ==> \dagWB0001000 %D %D (( DBDA DA -> %D DBA DBDA -> BDA DBDA -> %D BDBA DBA -> BDBA BDA -> %D BA BDBA -> %D A DA -> BA A -> %D )) %D enddiagram %D $$\pu \diag{S4-mods-A} \qquad \diag{S4-mods-v} $$ \bsk See: \url{https://groups.google.com/a/dimap.ufrn.br/forum/\#!msg/logica-l/JxptOElKnI0/h-ZX6qmvDwAJ} \newpage Let our Kripke frame $(W,R)$ be the transitive-reflexive closure of this: % %D diagram WB-frame %D 2Dx 100 +20 +20 +20 +20 +20 +20 %D 2D 100 1 2 3 %D 2D \ / \ / %D 2D v v v v %D 2D +20 4 5 6 <-> 7 %D 2D %D (( 1 4 -> 2 4 -> 2 5 -> 3 5 -> 6 7 <-> %D %D )) %D enddiagram %D \pu $$ \diag{WB-frame} $$ \def\vDA{\dagWB1111011} \def \vA{\dagWB0011001} \def\vBA{\dagWB0001000} \def\vDBA{\dagWB1101000} \def\vBDA{\dagWB1001011} \def\vDBDA{\dagWB1101011} \def\vBDBA{\dagWB1001000} %L forths["=="] = function () pusharrow("==") end These implications are easy to prove: %D diagram ?? %D 2Dx 100 +35 +35 +35 +0 +0 +35 +35 +35 %D 2D 100 DBDA DA %D 2D %D 2D +35 BDBDA BDA A DBA DBDBA %D 2D %D 2D +35 BA BDBA %D 2D %D ren DA BDA DBDA BDBDA ==> ⋄A ◻⋄A ⋄◻⋄A ◻⋄◻⋄A %D ren BA DBA BDBA DBDBA ==> ◻A ⋄◻A ◻⋄◻A ⋄◻⋄◻A %D %D (( DBDA BDBDA <- DBDA BDA <- DA BDA <- DA A <- %D A BA <- DBA BA <- DBA BDBA <- DBDBA BDBA <- %D # BDBDA BDA == DBA DBDBA == %D # DBDA DA --> %D # BA BDBA --> %D # DA DBA <-- %D # BDA BA <-- %D )) %D enddiagram %D $$\pu \diag{??} $$ If $A=\{3,4,7\}⊆W$ we get some conjectures... % %D diagram ?? %D 2Dx 100 +35 +35 +35 +0 +0 +35 +35 +35 %D 2D 100 DBDA DA %D 2D %D 2D +35 BDBDA BDA A DBA DBDBA %D 2D %D 2D +35 BA BDBA %D 2D %D ren A ==> \vA %D ren DA BDA DBDA BDBDA ==> \vDA \vBDA \vDBDA \vBDA %D ren BA DBA BDBA DBDBA ==> \vBA \vDBA \vBDBA \vDBA %D %D (( DBDA BDBDA <- DBDA BDA <- DA BDA <- DA A <- %D A BA <- DBA BA <- DBA BDBA <- DBDBA BDBA <- %D BDBDA BDA == DBA DBDBA == %D DBDA DA --> %D BA BDBA --> %D DA DBA <-- %D BDA BA <-- %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +35 +35 +35 +0 +0 +35 +35 +35 %D 2D 100 DBDA DA %D 2D %D 2D +35 BDBDA BDA A DBA DBDBA %D 2D %D 2D +35 BA BDBA %D 2D %D ren DA BDA DBDA BDBDA ==> ⋄A ◻⋄A ⋄◻⋄A ◻⋄◻⋄A %D ren BA DBA BDBA DBDBA ==> ◻A ⋄◻A ◻⋄◻A ⋄◻⋄◻A %D %D (( DBDA BDBDA <- DBDA BDA <- DA BDA <- DA A <- %D A BA <- DBA BA <- DBA BDBA <- DBDBA BDBA <- %D BDBDA BDA == DBA DBDBA == %D DBDA DA --> %D BA BDBA --> %D DA DBA <-- %D BDA BA <-- %D )) %D enddiagram %D $$\pu \diag{??} $$ \end{document} % Local Variables: % coding: utf-8-unix % ee-tla: "NONE" % End: