Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015oppositions.tex") % (defun c () (interactive) (find-LATEXsh "lualatex 2015oppositions.tex")) % (defun c () (interactive) (find-LATEXsh "lualatex --output-format=dvi 2015oppositions.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2015oppositions.pdf")) % (defun d () (interactive) (find-xdvipage "~/LATEX/2015oppositions.dvi")) % (defun e () (interactive) (find-LATEX "2015oppositions.tex")) % (defun l () (interactive) (find-LATEX "2015oppositions.lua")) % (find-pdf-page "~/LATEX/2015oppositions.pdf") \documentclass[oneside]{book} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} \usepackage{luacode} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") % (find-dn5file "preamble6.lua" "preamble0 =") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input istanbuldefs % (find-ist "defs.tex") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % http://angg.twu.net/LATEX/2015oppositions.pdf % https://mail.google.com/mail/ca/u/0/#sent/14e7def7753d04c7 \par Notes on the Logical Hexagon (for children) \par See: \url{http://en.wikipedia.org/wiki/Logical_hexagon} \par and: \url{http://angg.twu.net/math-b.html\#istanbul} \par Eduardo Ochs - eduardoochs@gmail.com - 2015jul11 \bsk Main idea: the logical hexagon becomes more concrete if we look at the behavior of the propositions at its vertices in a finite number of cases (``worlds''). For each proposition $P(x,y)$, our matrix representation shows the values of: % $$\mat{P(0,2) & P(1,2) & P(2,2) \\ P(0,1) & P(1,1) & P(2,1) \\ P(0,0) & P(1,0) & P(2,0)} $$ I don't know the conventions for drawing the arrows meaning contrariety, subcontrariety, etc, so I am not drawing them. \msk A logical hexagon: %\def\m#1#2#3#4#5#6#7#8#9{\mat{#1\\#4\\#7	\\}} %\def\m#1#2#3#4#5#6#7#8#9{\mat{#1#2#3\\#4#5#6\\#7#8#9\\}} \def\m#1#2#3#4#5#6#7#8#9{\sm {#1#2#3\\#4#5#6\\#7#8#9\\}} %D diagram hexagon %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 x!=y X!=Y %D 2D %D 2D +20 x<y x>y X<Y X>Y %D 2D %D 2D +30 x<=y x>=y X<=Y X>=Y %D 2D %D 2D +20 x=y X=Y %D 2D %D (( x<=y .tex= x≤y %D x>=y .tex= x≥y %D x!=y .tex= x≠y %D )) %D (( x=y x<=y x>=y x<y x>y x!=y %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 3 <- @ 2 @ 4 <- %D @ 3 @ 5 -> @ 4 @ 5 -> %D )) %D (( X=Y .tex= \m001010100 %D X<=Y .tex= \m111110100 %D X>=Y .tex= \m001011111 %D X<Y .tex= \m110100000 %D X>Y .tex= \m000001011 %D X!=Y .tex= \m110101011 %D )) %D (( X=Y X<=Y X>=Y X<Y X>Y X!=Y %D @ 0 @ 1 -> @ 0 @ 2 -> %D @ 1 @ 3 <- @ 2 @ 4 <- %D @ 3 @ 5 -> @ 4 @ 5 -> %D )) %D enddiagram %D \pu $$\diag{hexagon}$$ % (find-ist "-july.tex" "dxyren") % %L forths["="] = function () pusharrow("=") end %L %L dxyren = function (li) %L local a, b = li:match("^(.*) =+> (.*)$") %L local A, B = split(a), split(b) %L for i=1,#A do nodes[A[i]].tex = B[i] end %L end %L forths["ren"] = function () dxyren(getrestofline()) end Modal hexagon on S5: (We use this Kripke frame, $\sm{a{↔}b\\c{↔}d\\e{↔}f\\}$, and $A=\sm{00\\01\\11}$) %D diagram hexagon-modal %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 BAvBNA bavbna %D 2D %D 2D +20 BA BNA ba bna %D 2D %D 2D +30 DA DNA da dna %D 2D %D 2D +20 DA&DNA da&dna %D 2D %D ren BAvBNA bavbna => ◻A∨◻¬A \sm{11\\00\\11} %D ren BA BNA ba bna => ◻A ◻¬A \sm{00\\00\\11} \sm{11\\00\\00} %D ren DA DNA da dna => ⋄A ⋄¬A \sm{00\\11\\11} \sm{11\\11\\00} %D ren DA&DNA da&dna => ⋄A∧⋄¬A \sm{00\\11\\00} %D %D (( BAvBNA BA BNA DA DNA DA&DNA %D @ 0 @ 1 <- @ 0 @ 2 <- %D @ 1 @ 3 -> @ 2 @ 4 -> %D @ 3 @ 5 <- @ 4 @ 5 <- %D )) %D (( bavbna ba bna da dna da&dna %D @ 0 @ 1 <- @ 0 @ 2 <- %D @ 1 @ 3 -> @ 2 @ 4 -> %D @ 3 @ 5 <- @ 4 @ 5 <- %D )) %D enddiagram %D \pu $$\diag{hexagon-modal}$$ % http://www.logicalgeometry.org/papers-published.htm % https://perswww.kuleuven.be/~u0012115/Smessaert_Demey_Square2014_Bitstrings_slides.pdf % https://en.wikipedia.org/wiki/Algebraic_logic % https://en.wikipedia.org/wiki/Monadic_Boolean_algebra \end{document}