Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-2-C3-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-2-C3-P1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-2-C3-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-2-C3-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-2-C3-P1.pdf")) % (defun e () (interactive) (find-LATEX "2023-2-C3-P1.tex")) % (defun o () (interactive) (find-LATEX "2022-2-C3-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-2-C3-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-2-C3-P1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-2-C3-P1") % (find-pdf-page "~/LATEX/2023-2-C3-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2023-2-C3-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-2-C3-P1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-2-C3-P1.pdf") % file:///home/edrx/LATEX/2023-2-C3-P1.pdf % file:///tmp/2023-2-C3-P1.pdf % file:///tmp/pen/2023-2-C3-P1.pdf % http://anggtwu.net/LATEX/2023-2-C3-P1.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise2 Maxima2") % (find-Deps1-cps "Caepro5 Piecewise2 Maxima2 Cabos3 Numerozinhos1") % (find-Deps1-anggs "Caepro5 Piecewise2 Maxima2") % (find-MM-aula-links "2023-2-C3-P1" "C3" "c3m232p1" "c3p1") % (find-MM-aula-links "2023-2-C3-P1" "3" "c3m232p1" "c3p1") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.defs-maxima» (to "defs-maxima") % «.title» (to "title") % «.links» (to "links") % «.questao-1» (to "questao-1") % «.questao-2» (to "questao-2") % «.questao-3» (to "questao-3") % «.questao-1-grids» (to "questao-1-grids") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c3m232p1" "2023-2-C3-P1") % (code-eevvideo "c3m232p1" "2023-2-C3-P1") % (code-eevlinksvideo "c3m232p1" "2023-2-C3-P1") % (find-c3m232p1video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") \usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-2-C3.pdf} \def\drafturl{http://anggtwu.net/2023.2-C3.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorDarkOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorDarkOrange{\bf(#1 pts)}} % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L dofile "Piecewise2.lua" -- (find-LATEX "Piecewise2.lua") %L --dofile "Escadas1.lua" -- (find-LATEX "Escadas1.lua") \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt % «defs-maxima» (to ".defs-maxima") %L dofile "Maxima2.lua" -- (find-angg "LUA/Maxima2.lua") %L V = MiniV %L v = V.fromab \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c3m232p1p 1 "title") % (c3m232p1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo 3 - 2023.2} \bsk P1 (primeira prova) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.2-C3.html} \end{center} \newpage % «links» (to ".links") % (c3m232p1p 2 "links") % (c3m232p1a "links") \newpage % ___ _ _ % / _ \ _ _ ___ ___| |_ __ _ ___ / | % | | | | | | |/ _ \/ __| __/ _` |/ _ \ | | % | |_| | |_| | __/\__ \ || (_| | (_) | | | % \__\_\\__,_|\___||___/\__\__,_|\___/ |_| % % «questao-1» (to ".questao-1") % (c3m232p1p 2 "questao-1") % (c3m232p1a "questao-1") {\bf Questão 1} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \vspace*{-0.5cm} \T(Total: 5.0 pts) O diagrama de numerozinhos da última folha da prova corresponde a uma superfície $z=F(x,y)$ que tem 5 faces. Também é possível interpretá-lo como uma superfície com 6 ou mais faces, mas vamos considerar que a superfície com só 5 faces é que é a correta. \msk a) \B (1.0 pts) Mostre como dividir o plano em 5 polígonos que são as projeções destas faces no plano do papel. \msk b) \B (1.0 pts) Chame estas faces de face NW (``noroeste''), N (``norte''), W (``oeste''), C (``centro''), R (``resto''), e chame as equações dos planos delas de $F_{NW}(x,y)$, $F_{N}(x,y)$, $F_{W}(x,y)$, $F_{C}(x,y)$, e $F_R(x,y)$. Dê as equações destes planos. \msk c) \B (1.0 pts) Sejam: % $$\begin{array}{rcl} P_N &=& \setofxyzst{z = F_N(x,y)}, \\ P_C &=& \setofxyzst{z = F_C(x,y)}, \\ r &=& P_N ∩ P_C. \\ \end{array} $$ Represente a reta $r$ graficamente como numerozinhos. }\anothercol{ d) \B (0.5 pts) Dê uma parametrização para a reta do item anterior. Use notação de conjuntos. \msk e) \B (0.5 pts) Seja % $$A \;=\; \{0,1,\ldots,10\} × \{0,1,\ldots,10\};$$ note que os numerozinhos do diagrama de numerozinhos estão todos sobre pontos de $A$. Para cada ponto $(x,y)∈A$ represente graficamente $(x,y)+\frac13 \vec∇F(x,y)$. \ssk Obs: quando $\vec∇F(x,y)=0$ desenhe uma bolinha preta sobre o ponto $(x,y)$, e quando $\vec∇F(x,y)$ não existir faça um `$×$' sobre o numerozinho que está no ponto $(x,y)$. \msk f) \B (1.0 pts) Sejam % $$\begin{array}{rcl} Q(t) &=& (0,2) + t\VEC{1,1}, \\ (x(t),y(t)) &=& Q(t), \\ h(t) &=& F(x(t),y(t)). \\ \end{array} $$ Faça o gráfico da função $h(t)$. Considere que o domínio dela é o intervalo $[0,6]$. }} \newpage % ___ _ ____ % / _ \ _ _ ___ ___| |_ __ _ ___ |___ \ % | | | | | | |/ _ \/ __| __/ _` |/ _ \ __) | % | |_| | |_| | __/\__ \ || (_| | (_) | / __/ % \__\_\\__,_|\___||___/\__\__,_|\___/ |_____| % % «questao-2» (to ".questao-2") % (c3m232p1p 3 "questao-2") % (c3m232p1a "questao-2") {\bf Questão 2} \scalebox{0.55}{\def\colwidth{10cm}\firstcol{ \vspace*{-0.5cm} \T(Total: 3.0 pts) Sejam % $$\begin{array}{rcl} u(x,y) &=& y-2x, \\ v(x,y) &=& x+y, \\ F(x,y) &=& u(x,y)v(x,y) \\ &=& 2x^2 -xy -y^2. \\ \end{array} $$ Nesta questão você vai ter que fazer várias cópias do diagrama de numerozinhos da função $F(x,y)$ para os pontos com $x,y∈\{-2,-1,0,1,2\}$. Os numerozinhos vão ser estes aqui: % $$\begin{array}{rrrrr} 0 & 4 & 4 & 0 & -8 \\ -5 & 0 & 1 & -2 & -9 \\ -8 & -2 & 0 & -2 & -8 \\ -9 & -2 & 1 & 0 & -5 \\ -8 & 0 & 4 & 4 & 0 \\ \end{array} $$ a) \B (1.0 pts) Desenhe o ``campo gradiente'' da função $F$ nestes pontos, mas multiplicando cada $\vec∇F(x,y)$ por $\frac{1}{10}$ pros vetores não ficarem uns em cima dos outros. Deixa eu traduzir isso pra termos mais básicos: faça uma cópia do diagrama de numerozinhos da $F(x,y)$, e sobre cada $(x,y)$ com $x,y∈\{-2,-1,0,1,2\}$ desenhe a seta $(x,y)+\frac{1}{10}\vec∇F(x,y)$. }\anothercol{ b) \B (2.0 pts) Faça uma outra cópia desse diagrama de numerozinhos e desenhe sobre ela as curvas de nível da função $F(x,y)$ para $z=0$, $z=-2$, $z=-5$, $z=1$ e $z=2$. \bsk {\bf Dicas:} 1) O vetor gradiente num ponto $(x,y)$ é sempre ortogonal à curva de nível que passa pelo ponto $(x,y)$. 2) Faça quantos rascunhos quiser. Eu só vou corrigir seus desenhos pros itens (a) e (b) que disserem ``versão final'', e eles têm que ser os mais caprichados possíveis. }} \newpage % «questao-3» (to ".questao-3") % (c3m232p1p 4 "questao-3") % (c3m232p1a "questao-3") % (find-es "maxima" "2023-2-C3-P1") {\bf Questão 3} \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ \vspace*{-0.5cm} \T(Total: 3.0 pts) Se $F:\R^2→\R$, a matriz hessiana de $F$ é definida desta forma: % $$HF(x,y) \;=\; \pmat{F_{xx}(x,y) & F_{xy}(x,y) \\ F_{xy}(x,y) & F_{yy}(x,y) \\ } $$ Sejam: % $$\begin{array}{rcl} u &=& x+y-5 \\ v &=& y-2 \\ s &=& 3+uv \\ p &=& 4+u^2+v^2 \\ S(x,y) &=& 3+u(x,y)v(x,y) \\ P(x,y) &=& 4+u(x,y)^2+v(x,y)^2 \\ (x_0,y_0) &=& (3,2) \\ A &=& \{-1,0,1\} \\ B &=& \setofst{(x_0+Δx,y_0+Δy)}{Δx,Δy∈B} \\ \end{array} $$ a) \B (1.0 pts) Calcule $HS$ e $HP$. b) \B (2.0 pts) Desenhe os diagramas de numerozinhos de $u$, $v$, $s$ e $p$ ``nos 9 pontos em torno de $(x_0,y_0)$'' -- ou seja, nos pontos de $B$. }\anothercol{ }} \newpage % «barranco-defs» (to ".barranco-defs") % (c3m222p1p 2 "barranco-defs") % (c3m222p1p 5 "barranco-defs") % (c3m222p1a "barranco-defs") % (find-angg "GNUPLOT/2023-2-C3-P1.dem") % (find-anggfile "GNUPLOT/2023-2-C3-P1.dem" "bgprocess") % (find-eepitch-intro "3.3. `eepitch-preprocess-line'") % (setq eepitch-preprocess-regexp "") % (setq eepitch-preprocess-regexp "^%?%L ?") % %%L * (eepitch-lua51) %%L * (eepitch-kill) %%L * (eepitch-lua51) %%L Path.prependtopath "~/LUA/?.lua" %L require "Cabos3" %L require "Numerozinhos1" %L PictBounds.setbounds(v(0,0), v(11,11)) %L %L bigstr1 = [[ %L 6 6 6 6 4 2 0 0 0 0 0 %L 6 6 6 6 4 2 0 0 0 0 0 %L 6 6 6 6 4 2 0 0 0 0 0 %L 5 5 5 5 4 2 0 0 0 0 0 %L 4 4 4 4 3 2 0 0 0 0 0 %L 3 3 3 3 2 1 0 0 0 0 0 %L 2 2 2 2 1 0 0 0 0 0 0 %L 1 1 1 1 0 0 0 0 0 0 0 %L 0 0 0 0 0 0 0 0 0 0 0 %L 0 0 0 0 0 0 0 0 0 0 0 %L 0 0 0 0 0 0 0 0 0 0 0 %L ]] %L bigstr2 = [[ %L 6 - 6 - 6 - A - 4 - 2 - B - 0 - 0 - 0 - 0 %L | . | . | . | . | . | . | . | . | . | . | %L 6 - 6 - 6 - 6 - 4 - 2 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | . | . | . | . | . | . | . | %L C - 6 - 6 - D - 4 - 2 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | \ | . | . | . | . | . | . | %L 5 - 5 - 5 - 5 - 4 - 2 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | . | \ | . | . | . | . | . | %L 4 - 4 - 4 - 4 - 3 - 2 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | . | . | \ | . | . | . | . | %L 3 - 3 - 3 - 3 - 2 - 1 - E - 0 - 0 - 0 - 0 %L | . | . | . | . | . | / | . | . | . | . | %L 2 - 2 - 2 - 2 - 1 - 0 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | . | / | . | . | . | . | . | %L 1 - 1 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | / | . | . | . | . | . | . | %L F - 0 - 0 - G - 0 - 0 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | . | . | . | . | . | . | . | %L 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 %L | . | . | . | . | . | . | . | . | . | . | %L 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 %L ]] %L clabels = CabosNaDiagonal.from(bigstr2) %L lbls = clabels.strgrid:labels() %L spec = lbls:subst("A--D--C B--E--G--F D--E D--G") %L ns = Numerozinhos.from(0, 0, bigstr1) %L p1 = ns:show0 {u="25pt"}:sa("barranco") %L ns:setspec(spec) %L p2 = ns:show0():sa("barranco 2") %L p3 = Pict { p1, p2 } %L p4 = Pict { p1, p2, [[\ga{barranco} \ga{barranco com linhas}]] } %L p3:output() %%L = p4:show("") %%L = Show.bigstr %%L * (etv) \pu \newpage % «questao-1-grids» (to ".questao-1-grids") \def\barra{\scalebox{0.35}{\ga{barranco}}} \def\barras{\barra \quad \barra \quad \barra} $\begin{array}{l} \barras \\ \\[-5pt] \barras \\ \end{array} $ \newpage \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2023.2-C3/") # (find-fline "~/LATEX/2023-2-C3/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2023.2-C3/ cp -fv $1.pdf ~/LATEX/2023-2-C3/ cat <<%%% % (find-latexscan-links "C3" "$1") %%% } f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2023-2-C3-P1 veryclean make -f 2019.mk STEM=2023-2-C3-P1 pdf % (find-pdfpages2-links "~/LATEX/" "2023-2-C3-P1") % (find-pdfpages2-links "~/LATEX/" "2023-2-C3-P1" "-pp" "pages=5,fitpaper,landscape=true") % Local Variables: % coding: utf-8-unix % ee-tla: "c3p1" % ee-tla: "c3m232p1" % End: