Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2023-1-C4-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2023-1-C4-P1.tex" :end)) % (defun C () (interactive) (find-LATEXsh "lualatex 2023-1-C4-P1.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2023-1-C4-P1.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2023-1-C4-P1.pdf")) % (defun e () (interactive) (find-LATEX "2023-1-C4-P1.tex")) % (defun o () (interactive) (find-LATEX "2023-1-C4-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2023-1-C4-P1")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun d0 () (interactive) (find-ebuffer "2023-1-C4-P1.pdf")) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (code-eec-LATEX "2023-1-C4-P1") % (find-pdf-page "~/LATEX/2023-1-C4-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2023-1-C4-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2023-1-C4-P1.pdf /tmp/pen/") % (find-xournalpp "/tmp/2023-1-C4-P1.pdf") % file:///home/edrx/LATEX/2023-1-C4-P1.pdf % file:///tmp/2023-1-C4-P1.pdf % file:///tmp/pen/2023-1-C4-P1.pdf % http://anggtwu.net/LATEX/2023-1-C4-P1.pdf % (find-LATEX "2019.mk") % (find-Deps1-links "Caepro5 Piecewise1") % (find-Deps1-cps "Caepro5 Piecewise1") % (find-Deps1-anggs "Caepro5 Piecewise1") % (find-MM-aula-links "2023-1-C4-P1" "C4" "c4m231p1" "c4p1") % «.defs» (to "defs") % «.defs-T-and-B» (to "defs-T-and-B") % «.defs-caepro» (to "defs-caepro") % «.defs-pict2e» (to "defs-pict2e") % «.title» (to "title") % «.links» (to "links") % «.questoes-123» (to "questoes-123") % «.dicas» (to "dicas") % «.questao-1-gab» (to "questao-1-gab") % «.questao-2-gab» (to "questao-2-gab") % «.questao-3-gab» (to "questao-3-gab") % % «.djvuize» (to "djvuize") % <videos> % Video (not yet): % (find-ssr-links "c4m231p1" "2023-1-C4-P1") % (code-eevvideo "c4m231p1" "2023-1-C4-P1") % (code-eevlinksvideo "c4m231p1" "2023-1-C4-P1") % (find-c4m231p1video "0:00") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx21} % (find-LATEX "edrx21.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrx21chars.tex % (find-LATEX "edrx21chars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\usepackage{emaxima} % (find-LATEX "emaxima.sty") % % (find-es "tex" "geometry") \usepackage[a6paper, landscape, top=1.5cm, bottom=.25cm, left=1cm, right=1cm, includefoot ]{geometry} % \begin{document} % «defs» (to ".defs") % (find-LATEX "edrx21defs.tex" "colors") % (find-LATEX "edrx21.sty") \def\drafturl{http://anggtwu.net/LATEX/2023-1-C4.pdf} \def\drafturl{http://anggtwu.net/2023.1-C4.html} \def\draftfooter{\tiny \href{\drafturl}{\jobname{}} \ColorBrown{\shorttoday{} \hours}} \def\Dint{\int\!\!\!\!\int} \def\P#1{\left( #1 \right)} % «defs-T-and-B» (to ".defs-T-and-B") \long\def\ColorOrange#1{{\color{orange!90!black}#1}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){\ColorRed{\bf(Total: #1 pts)}} \def\B (#1 pts){\ColorOrange{\bf(#1 pts)}} % (find-LATEX "2023-1-C2-carro.tex" "defs-caepro") % (find-LATEX "2023-1-C2-carro.tex" "defs-pict2e") \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «defs-caepro» (to ".defs-caepro") %L dofile "Caepro5.lua" -- (find-angg "LUA/Caepro5.lua" "LaTeX") \def\Caurl #1{\expr{Caurl("#1")}} \def\Cahref#1#2{\href{\Caurl{#1}}{#2}} \def\Ca #1{\Cahref{#1}{#1}} % «defs-pict2e» (to ".defs-pict2e") %L V = nil -- (find-angg "LUA/Pict2e1.lua" "MiniV") %L dofile "Piecewise1.lua" -- (find-LATEX "Piecewise1.lua") %L Pict2e.__index.suffix = "%" \def\pictgridstyle{\color{GrayPale}\linethickness{0.3pt}} \def\pictaxesstyle{\linethickness{0.5pt}} \def\pictnaxesstyle{\color{GrayPale}\linethickness{0.5pt}} \celllower=2.5pt \pu % _____ _ _ _ % |_ _(_) |_| | ___ _ __ __ _ __ _ ___ % | | | | __| |/ _ \ | '_ \ / _` |/ _` |/ _ \ % | | | | |_| | __/ | |_) | (_| | (_| | __/ % |_| |_|\__|_|\___| | .__/ \__,_|\__, |\___| % |_| |___/ % % «title» (to ".title") % (c4m231p1p 1 "title") % (c4m231p1a "title") \thispagestyle{empty} \begin{center} \vspace*{1.2cm} {\bf \Large Cálculo C4 - 2023.1} \bsk Primeira prova (P1) \bsk Eduardo Ochs - RCN/PURO/UFF \url{http://anggtwu.net/2023.1-C4.html} \end{center} \newpage % «links» (to ".links") % ___ _ _ ____ _____ % / _ \ _ _ ___ ___| |_ ___ ___ ___ / | |___ \ |___ / % | | | | | | |/ _ \/ __| __/ _ \ / _ \/ __| | | __) | |_ \ % | |_| | |_| | __/\__ \ || (_) | __/\__ \ | |_ / __/ _ ___) | % \__\_\\__,_|\___||___/\__\___/ \___||___/ |_( ) |_____( ) |____/ % |/ |/ % «questoes-123» (to ".questoes-123") % (c4m231p1p 2 "questoes-123") % (c4m231p1a "questoes-123") \scalebox{0.65}{\def\colwidth{8.5cm}\firstcol{ {\bf Questão 1.} \T(Total: 1.0 pts) Seja $R$ o retângulo da direita. Calcule: % $$\Dint_R x^3 y^5 \, dx \, dy.$$ Dica: neste caso tanto faz você integrar primeiro em $x$ e depois em $y$ quanto integrar primeiro em $y$ e depois em $x$; os dois modos são igualmente fáceis. \bsk \bsk {\bf Questão 2.} \T(Total: 5.0 pts) Seja $B$ a região tipo ``pedaço de bolo'' à direita -- ela é um quarto de um bolo de raio 2 com furo de raio 1. Calcule % $$\Dint_B x \, dx \, dy.$$ Pra resolver isso você vai ter que mudar a integral pra coordenadas polares. }\anothercol{ \vspace*{1cm} % (find-latexscan-links "C4" "C4-P1-R") % (find-latexscan-links "C4" "C4-P1-B") % (find-xpdf-page "~/LATEX/2023-1-C4/C4-P1-R.pdf") % (find-xpdf-page "~/LATEX/2023-1-C4/C4-P1-B.pdf") $$\begin{array}{rcc} R &=& \myvcenter{\includegraphics[height=3cm]{2023-1-C4/C4-P1-R.pdf}} \\ B &=& \myvcenter{\includegraphics[height=2cm]{2023-1-C4/C4-P1-B.pdf}} \\ \end{array} $$ \vspace*{1cm} {\bf Questão 3.} \T(Total: 6.0 pts) Seja $S$ este retângulo: $S = [1,2]×[1,2]$. Calcule esta integral de linha: % $$\oint_{∂S} \VEC{xy^2,x^3y^4}·\VEC{dx,dy}.$$ }} \newpage % ____ _ % | _ \(_) ___ __ _ ___ % | | | | |/ __/ _` / __| % | |_| | | (_| (_| \__ \ % |____/|_|\___\__,_|___/ % % «dicas» (to ".dicas") \scalebox{0.6}{\def\colwidth{9cm}\firstcol{ {} {\bf Dica:} Pra ``calcular'' $\difx{23}{45}{x^3}$ basta fazer isso aqui: % $$\difx{23}{45}{x^3} \;=\; 45^3 - 23^3$$ com isso você chega em algo que dá pra transformar num número usando só uma calculadora que só saiba fazer operações básicas. Você não precisa destes passos extras: % $$45^3 - 23^3 \;=\; 91125 - 12167 \;=\; 78958$$ A explicação está em um dos slides de Cálculo 2 do material anexo -- procure por ``dicas sobre simplificação''. \bsk \bsk {\bf Outra dica.} Nas questões desta prova o que vai contar mais pontos é você organizar as contas de modo que cada passo seja fácil de entender, de verificar, e de justificar -- ``chegar no resultado certo'' vai valer relativamente pouco. }\anothercol{ }} \newpage \scalebox{0.7}{\def\colwidth{8cm}\firstcol{ % «questao-1-gab» (to ".questao-1-gab") % (c4m231p1p 4 "questao-1-gab") % (c4m231p1a "questao-1-gab") {\bf Questão 1: gabarito} \def\Intxx#1{\Intx{20}{42}{#1}} \def\Intyy#1{\Inty{99}{200}{#1}} \def\difxx#1{\difx{20}{42}{#1}} \def\difyy#1{\difx{99}{200}{#1}} $$\begin{array}{l} \int \!\!\! \int_R x^3 y^5 \, dx \, dy \\ =\;\; \Intxx{\Intyy{x^3 y^5}} \\ =\;\; \Intxx{x^3 \P{\Intyy{y^5}}} \\ =\;\; \P{\Intxx{x^3}} \P{\Intyy{y^5}} \\ =\;\; \P{\difxx{\frac{x^4}{4}}} \P{\difyy{\frac{y^6}{6}}} \\\\[-8pt] =\;\; \frac{42^4-20^4}{4} \; \frac{200^6-99^6}{6} \end{array} $$ }\anothercol{ % «questao-2-gab» (to ".questao-2-gab") % (c4m231p1p 4 "questao-2-gab") % (c4m231p1a "questao-2-gab") {\bf Questão 2: gabarito} \def\vmat#1{\left| \begin{matrix} #1\end{matrix} \right|} \def\vsm #1{\left| \begin{smallmatrix}#1\end{smallmatrix} \right|} \def\Intrr#1{\Intr {1}{2}{#1}} \def\Inttt#1{\Intth{0}{\frac{π}{2}}{#1}} \def\difrr#1{\difr {1}{2}{#1}} \def\diftt#1{\difth{0}{\frac{π}{2}}{#1}} Vamos usar esta mudança de variáveis: % $$\begin{array}{rcl} (x,y) &=& (r\cosθ, r\senθ) \\ \vsm{x_r & x_θ \\ y_r & y_θ} &=& \vsm{\cosθ & r(-\senθ) \\ \senθ & r\cosθ} \;=\; r \\ % &=& r \\ dx\,dy &=& \vsm{x_r & x_θ \\ y_r & y_θ} dr\,dθ \\ &=& r\,dr\,dθ \\ \end{array} $$ Então: $$\begin{array}{l} \int \!\!\! \int_B x \, dx \, dy \\ =\;\; \Intrr{\Inttt{(r\cosθ)\,r}} \\ =\;\; \Intrr{\Inttt{r^2\cosθ}} \\ =\;\; \P{\Intrr{r^2}} \P{\Inttt{\cosθ}} \\ =\;\; \P{\difrr{\frac{r^3}{3}}} \P{\diftt{\senθ}} \\ =\;\; \frac{8-1}{3}(1-0) \\ \end{array} $$ }} \newpage % «questao-3-gab» (to ".questao-3-gab") % (c4m231p1p 5 "questao-3-gab") % (c4m231p1a "questao-3-gab") \def\Inttp#1{\Intt{ 1}{ 2}{#1}} \def\Inttn#1{\Intt{-2}{-1}{#1}} \def\diftp#1{\dift{ 1}{ 2}{#1}} \def\diftn#1{\dift{-2}{-1}{#1}} \scalebox{0.45}{\def\colwidth{6cm}\firstcol{ {\bf Questão 3: gabarito} Vou decompor $∂S$ em $C_1$, $C_2$, $C_3$, $C_4$ -- as paredes direita, de cima, esquerda, e de baixo do quadrado -- e vou parametrizar $C_1$, $C_2$, $C_3$, $C_4$ desta forma: \msk Em $C_1$: $(x(t),y(t))=(2,t)$, com $t$ indo de $1$ até 2; aqui $(x_t,y_t)=(0,1)$. \msk Em $C_2$: $(x(t),y(t))=(-t,2)$, com $t$ indo de $-2$ até -1; aqui $(x_t,y_t)=(-1,0)$. \msk Em $C_3$: $(x(t),y(t))=(1,-t)$, com $t$ indo de $-2$ até -1; aqui $(x_t,y_t)=(0,-1)$. \msk Em $C_4$: $(x(t),y(t))=(t,1)$, com $t$ indo de $1$ até 2; aqui $(x_t,y_t)=(1,0)$. \ssk }\anothercol{ \vspace*{0.2cm} Temos: \msk $\begin{array}{l} \int_{C_1} (P,Q)·(dx,dy) \\ =\; \Inttp {(P,Q)·(x_t,y_t)} \\ =\; \Inttp {(P,Q)·(0,1)} \\ =\; \Inttp {Q(x(t),y(t))} \\ =\; \Inttp {Q(2,t)} \\ \\ \int_{C_2} (P,Q)·(dx,dy) \\ =\; \Inttn {(P,Q)·(x_t,y_t)} \\ =\; \Inttn {(P,Q)·(-1,0)} \\ =\; \Inttn {-P(x(t),y(t))} \\ =\; \Inttn {-P(-t,2)} \\ \\ \int_{C_3} (P,Q)·(dx,dy) \\ =\; \Inttn {(P,Q)·(x_t,y_t)} \\ =\; \Inttn {(P,Q)·(0,-1)} \\ =\; \Inttn {-Q(x(t),y(t))} \\ =\; \Inttn {-Q(1,-t)} \\ \\ \int_{C_4} (P,Q)·(dx,dy) \\ =\; \Inttp {(P,Q)·(x_t,y_t)} \\ =\; \Inttp {(P,Q)·(1,0)} \\ =\; \Inttp {P(x(t),y(t))} \\ =\; \Inttp {P(t,1)} \\ \end{array} $ % $$\Inttp{\Inttn{foo}}$$ }\anothercol{ \vspace*{0.2cm} Como nesse problema temos $P(x,y) = xy^2$ e $Q(x,y) = x^3y^4$, isso vira: \msk $\begin{array}{l} \int_{C_1} (P,Q)·(dx,dy) \\ =\; \Inttp {Q(2,t)} \\ =\; \Inttp {2^3t^4} \\ =\; 2^3 \Inttp {t^4} \\ =\; 8 \P{\diftp {\frac{t^5}{5}}} \\ \\ \int_{C_2} (P,Q)·(dx,dy) \\ =\; \Inttn {-P(-t,2)} \\ =\; \Inttn {-(-t)2^2} \\ =\; 4 \Inttn {t} \\ =\; 4 \P{\diftn {\frac{t^2}{2}}} \\ \\ \int_{C_3} (P,Q)·(dx,dy) \\ =\; \Inttn {-Q(1,-t)} \\ =\; \Inttn {-1^3(-t)^4} \\ =\; - \Inttn {t^4} \\ =\; 4 \P{\diftn {\frac{t^5}{5}}} \\ \\ \int_{C_4} (P,Q)·(dx,dy) \\ =\; \Inttp {P(t,1)} \\ =\; \Inttp {t·1^2} \\ =\; \Inttp {t} \\ =\; \P{\diftp {\frac{t^2}{2}}} \\ \end{array} $ }\anothercol{ \vspace*{0.2cm} E aí: \msk $\begin{array}{l} \oint_{∂S} (xy^2,x^3y^4)·(dx,dy) \\ = \; \int_{C_1} (xy^2,x^3y^4)·(dx,dy) \\ + \; \int_{C_2} (xy^2,x^3y^4)·(dx,dy) \\ + \; \int_{C_3} (xy^2,x^3y^4)·(dx,dy) \\ + \; \int_{C_4} (xy^2,x^3y^4)·(dx,dy) \\ = \; 8 \P{\diftp {\frac{t^5}{5}}} \\ + \; 4 \P{\diftn {\frac{t^2}{2}}} \\ + \; 4 \P{\diftn {\frac{t^5}{5}}} \\ + \; \P{\diftp {\frac{t^2}{2}}} . \\ \end{array} $ }} % (find-es "maxima" "2023-1-C4-P1") \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % ____ _ _ % | _ \(_)_ ___ _(_)_______ % | | | | \ \ / / | | | |_ / _ \ % | |_| | |\ V /| |_| | |/ / __/ % |____// | \_/ \__,_|_/___\___| % |__/ % % «djvuize» (to ".djvuize") % (find-LATEXgrep "grep --color -nH --null -e djvuize 2020-1*.tex") * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-fline "~/2023.1-C4/") # (find-fline "~/LATEX/2023-1-C4/") # (find-fline "~/bin/djvuize") cd /tmp/ for i in *.jpg; do echo f $(basename $i .jpg); done f () { rm -v $1.pdf; textcleaner -f 50 -o 5 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 10 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -v $1.pdf; textcleaner -f 50 -o 20 $1.jpg $1.png; djvuize $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 15" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 30" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 1.0 -f 45" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.5" $1.pdf; xpdf $1.pdf } f () { rm -fv $1.png $1.pdf; djvuize WHITEBOARDOPTS="-m 0.25" $1.pdf; xpdf $1.pdf } f () { cp -fv $1.png $1.pdf ~/2023.1-C4/ cp -fv $1.pdf ~/LATEX/2023-1-C4/ cat <<%%% % (find-latexscan-links "C4" "$1") %%% } f C4-P1-B f C4-P1-R f 20230612_012330 f 20201213_area_em_funcao_de_theta f 20201213_area_em_funcao_de_x f 20201213_area_fatias_pizza % Local Variables: % coding: utf-8-unix % ee-tla: "c4p1" % ee-tla: "c4m231p1" % End: