Warning: this is an htmlized version!
The original is here, and
the conversion rules are here.
% (find-LATEX "2022ebl-abs.tex")
% (defun a () (interactive) (find-fline "$S/http/www.ebl2021.ufba.br/assets/files/latex_template.tex"))
% (defun c () (interactive) (find-LATEXsh "pdflatex -record 2022ebl-abs.tex" :end))
% (defun C () (interactive) (find-LATEXSH "pdflatex -record 2022ebl-abs.tex" "Success!!!"))
% (defun D () (interactive) (find-pdf-page      "~/LATEX/2022ebl-abs.pdf"))
% (defun d () (interactive) (find-pdftools-page "~/LATEX/2022ebl-abs.pdf"))
% (defun e () (interactive) (find-LATEX "2022ebl-abs.tex"))
% (defun u () (interactive) (find-latex-upload-links "2022ebl-abs"))
% (defun v () (interactive) (find-2a '(e) '(d)))
% (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g))
% (defun d0 () (interactive) (find-ebuffer "2022ebl-abs.pdf"))
%          (code-eec-LATEX "2022ebl-abs")
% (find-pdf-page   "~/LATEX/2022ebl-abs.pdf")
% (find-sh0 "cp -v  ~/LATEX/2022ebl-abs.tex /tmp/")
% (find-sh0 "cp -v  ~/LATEX/2022ebl-abs.pdf /tmp/")
% (find-sh0 "cp -v  ~/LATEX/2022ebl-abs.pdf /tmp/pen/")
%   file:///home/edrx/LATEX/2022ebl-abs.pdf
%               file:///tmp/2022ebl-abs.pdf
%           file:///tmp/pen/2022ebl-abs.pdf
% http://angg.twu.net/LATEX/2022ebl-abs.pdf
% (find-LATEX "2019.mk")
% (find-lualatex-links "2022ebl-abs" "ebl")
% https://mail.google.com/mail/u/0/#inbox/FMfcgzGpGKhRRHqMsfzvPtcbfNmMNVKq EBL submission 49
% https://mail.google.com/mail/u/0/#sent/QgrcJHrtrSkBjQKzMlvVztfpMlTfWWSlKJV LaTeX source
%
% https://ebl2021.ufba.br/ -> program -> book of abstracts
% https://ebl2021.ufba.br/assets/files/abstracts.pdf
% (code-pdf-page "ebl2021abstracts" "$S/https/ebl2021.ufba.br/assets/files/abstracts.pdf")
% (code-pdf-text "ebl2021abstracts" "$S/https/ebl2021.ufba.br/assets/files/abstracts.pdf" 1)
% (find-ebl2021abstractspage)
% (find-ebl2021abstractstext)
% (find-ebl2021abstractspage (+ 1 147) "Eduardo Ochs")
% (find-ebl2021abstractstext (+ 1 147) "Eduardo Ochs")

\documentclass[11pt]{article}

%use one of the following package accordingly

%\usepackage[brazil]{babel} % for portuguese
\usepackage[english]{babel} % for english
%\usepackage[spanish]{babel} % for spanish

\usepackage[latin1]{inputenc} % for accents in portuguese
%\usepackage[utf8]{inputenc} % for accents in portuguese using Unicode 

%%
%%
%% PLEASE DO NOT MAKE CHANGES TO THIS TEMPLATE 
%% THAT CAUSE CHANGES IN THE FORMAT OF THE TEXT
%%
%%
\usepackage[centertags]{amsmath}
\usepackage{indentfirst,amsfonts,amssymb,amsthm}
\usepackage{cite}
\usepackage[bottom=1.5cm,top=1.5cm,left=3cm,right=2cm]{geometry}
\date{}

\begin{document}

%********************************************************
\title{On a way to visualize some \\ Grothendieck Topologies}

\author{
{\large  Eduardo Ochs}\thanks{eduardoochs@gmail.com}\\
{\small UFF, Rio das Ostras, RJ, Brazil} \\
 }

\maketitle

\begin{abstract}

\def\Jcan{J_{\text{can}}}
\def\R{\mathbb{R}}
\def\Opens{\mathcal{O}}
\def\calS{\mathcal{S}}
\def\catC{\mathbf{C}}

The {\sl canonical Grothendieck topology} on $\R$, $\Jcan$, is easy to
define, but the definition takes several steps: 1) for each open set
$U \in \Opens(\R)$ a {\sl sieve on $U$} is a subset of $\Opens(U)$
that is downward-closed; 2) for each $U \in \Opens(\R)$ we write
$\Omega(U)$ for the set of all sieves on $U$; 3) we say that a sieve
$\calS \in \Omega(U)$ is {\sl covering} when $\bigcup \calS = U$; 4)
for each $U \in \Opens(\R)$ we define $\Jcan(U)$ as the set of covering
sieves on $U$.

The ``real'' definition of Grothendieck Topology generalizes this
definition of $\Jcan$ in many ways: in particular, it starts with a
category $\catC$ instead of a topological space $(\R,\Opens(\R))$, and
we can have many notions of ``covering-ness'' for the same category
--- they just have to obey the three axioms in \cite{SGL}, p.110.

In this presentation I will show how we can use some of the techniques
in \cite{O22} to understand the general definition of Grothendieck
Topology, and I will show how we can visualize all the Grothendieck
Topologies on one of the Planar Heyting Algebras of \cite{O19}. Most
of the diagrams in the presentation will be taken from \cite{O21}.

\end{abstract}



\begin{thebibliography}{00}


\bibitem{SGL} Mac Lane, S.; Moerdijk, I. {\em Sheaves in geometry and
    logic: a first introduction to topos theory}. Springer, 1992.

\bibitem{O22} Ochs, E. On the missing diagrams in Category Theory. In:
  L. Magnani (editor), {\em Handbook of Abductive Reasoning}.
  Springer, 2022. Available at \\ {\tt
    http://angg.twu.net/math-b.html\#2022-md}.

\bibitem{O21} Ochs, E. {\em Grothendieck Topologies for Children}. \\
Available at {\tt http://angg.twu.net/math-b.html\#2021-groth-tops}.

\bibitem{O19} Ochs, E. Planar Heyting Algebras for Children. {\em
    South American Journal of Logic} 5.1:125--164, 2019. Available at
  {\tt http://angg.twu.net/math-b.html\#zhas-for-children-2}.

\end{thebibliography}



\GenericWarning{Success:}{Success!!!}  % Used by `M-x cv'

\end{document}

% Local Variables:
% coding: utf-8-unix
% ee-tla: "ebla"
% End: