Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020macdonaldsobral.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020macdonaldsobral.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020macdonaldsobral.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020macdonaldsobral.pdf")) % (defun e () (interactive) (find-LATEX "2020macdonaldsobral.tex")) % (defun u () (interactive) (find-latex-upload-links "2020macdonaldsobral")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020macdonaldsobral.pdf") % (find-sh0 "cp -v ~/LATEX/2020macdonaldsobral.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020macdonaldsobral.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020macdonaldsobral.pdf % file:///tmp/2020macdonaldsobral.pdf % file:///tmp/pen/2020macdonaldsobral.pdf % http://angg.twu.net/LATEX/2020macdonaldsobral.pdf % (find-LATEX "2019.mk") % «.title» (to "title") % «.monads» (to "monads") % «.EM-construction» (to "EM-construction") % «.EM-adjunction» (to "EM-adjunction") % «.kleisli-construction» (to "kleisli-construction") % «.kleisli-adjunction» (to "kleisli-adjunction") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % «title» (to ".title") {\setlength{\parindent}{0em} \footnotesize Notes on John MacDonald and Manuela Sobral's ``Aspects of Monads'': \url{https://doi.org/10.1017/CBO9781107340985.008} a chapter of ``Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory'', edited by Maria Cristina Pedicchio and Walter Tholen, Cambridge, 2003. \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020macdonaldsobral.pdf} } % __ __ _ % | \/ | ___ _ __ __ _ __| |___ % | |\/| |/ _ \| '_ \ / _` |/ _` / __| % | | | | (_) | | | | (_| | (_| \__ \ % |_| |_|\___/|_| |_|\__,_|\__,_|___/ % % «monads» (to ".monads") \section*{1.2. Monads} % (find-books "__cats/__cats.el" "macdonald-sobral") % (find-mcdsobralpage (+ -212 216) "1.2. Monads") % (find-mcdsobraltext (+ -212 216) "1.2. Monads") % (find-mcdsobralpage (+ -212 217) "Proposition. Any adjunction") % (find-mcdsobraltext (+ -212 217) "Proposition. Any adjunction") % (find-symbolspage 70 "\\rightharpoonup") % (find-symbolstext 70 "\\rightharpoonup") (Page 216): A monad on a category $𝐛X$ is a system $(T,η,μ)$... (Page 217): Proposition: any adjunction $(F,G,η,ε): 𝐛X \rightharpoonup 𝐛A$ determines a monad... %D diagram ?? %D 2Dx 100 +20 +20 +20 +20 +20 +20 +20 %D 2D 100 A0 B0 B1 D0 E0 %D 2D %D 2D +20 A1 B2 B3 D1 E1 F0 F1 F2 %D 2D %D 2D +20 C0 C1 D2 E2 F3 F4 F5 %D 2D %D ren A0 A1 ==> FGA A %D ren B0 B1 B2 B3 ==> FX X A GA %D ren C0 C1 ==> 𝐛A 𝐛X %D ren D0 D1 D2 ==> X GFX GFGFX %D ren E0 E1 E2 ==> 1 T T^2 %D ren F0 F1 F2 ==> T T^2 T^3 %D ren F3 F4 F5 ==> T^2 T T^2 %D %D (( A0 A1 -> .plabel= l εA %D B0 B1 <-| %D B0 B2 -> %D B1 B3 -> %D B2 B3 |-> %D C0 C1 <- sl^ .plabel= a F %D C0 C1 -> sl_ .plabel= b G %D D0 D1 -> .plabel= r ηX %D D1 D2 <- .plabel= r GεFX %D E0 E1 -> .plabel= r η %D E1 E2 <- .plabel= r μ %D F0 F1 -> .plabel= a Tη %D F1 F2 <- .plabel= a Tμ %D F0 F3 -> .plabel= l ηT %D F0 F4 -> .plabel= m 1_𝐛X %D F1 F4 -> .plabel= r μ %D F2 F5 -> .plabel= r μT %D F3 F4 -> .plabel= b μ %D F4 F5 <- .plabel= b μ %D )) %D enddiagram %D $$\pu \diag{??} $$ % _____ __ __ ____ % | ____| \/ | / ___| % | _| | |\/| | | | % | |___| | | | | |___ % |_____|_| |_| \____| % % «EM-construction» (to ".EM-construction") % (mdsp 1 "EM-construction") % (mds "EM-construction") \section*{1.3. The Eilenberg-Moore Construction} (Page 217): % (find-mcdsobralpage (+ -212 217) "1.3. The Eilenberg-Moore construction") % (find-mcdsobraltext (+ -212 217) "1.3. The Eilenberg-Moore construction") ...category of T-algebras which will be denoted by $𝐛X^T$. %D diagram ?? %D 2Dx 100 +20 +20 +20 %D 2D 100 A0 B0 B1 B2 %D 2D +10 A0 %D 2D +10 B3 B4 %D 2D %D 2D +20 A1 C1 C2 %D 2D %D 2D +20 A2 C3 C4 %D 2D %D 2D +20 A3 D0 %D 2D %D ren A0 A1 A2 A3 ==> (X,ξ) (X,ξ) (Y,Θ) 𝐛X^T %D ren B0 B1 B2 ==> X TX T^2X %D ren B3 B4 ==> X TX %D ren C1 C2 ==> X TX %D ren C3 C4 ==> Y TY %D ren D0 ==> 𝐛X %D %D (( A0 place %D A1 A2 -> .plabel= l f %D A3 place %D %D B0 B1 -> .plabel= a ηX %D B1 B2 <- .plabel= a μX %D B0 B3 -> .plabel= l 1_X %D B1 B3 -> .plabel= r ξ %D B2 B4 -> .plabel= r Tξ %D B3 B4 <- .plabel= a ξ %D %D C1 C2 <- .plabel= a ξ %D C1 C3 -> .plabel= l f %D C2 C4 -> .plabel= r Tf %D C3 C4 <- .plabel= a θ %D D0 xy+= 10 0 %D D0 place %D )) %D enddiagram %D $$\pu \diag{??} $$ % _____ __ __ _ _ % | ____| \/ | __ _ __| |(_) % | _| | |\/| | / _` |/ _` || | % | |___| | | | | (_| | (_| || | % |_____|_| |_| \__,_|\__,_|/ | % |__/ % % «EM-adjunction» (to ".EM-adjunction") \subsection*{The Eilenberg-Moore adjunction} (Page 218): Proposition: For a monad $T=(T,η,μ)$ on $𝐛X$ there is a free-forgetful adjunction % $$𝐛X^T \two/->`<-/<250>^{G^T}_{F^T} 𝐛X$$ % which induces the monad $T$ in $𝐛X$. %D diagram ?? %D 2Dx 100 +35 +30 +20 +20 +30 +25 %D 2D 100 A0 A1 E1 %D 2D %D 2D +20 C0 A2 A3 D1 E2 E3 %D 2D %D 2D +20 C1 A4 A5 D2 D3 E4 E5 %D 2D %D 2D +20 A6 A7 %D 2D %D 2D +20 B0 B1 %D 2D %D ren A0 A1 ==> (TX',μX') X' %D ren A2 A3 ==> (TX,μX) TX %D ren A4 A5 ==> (Y,θ) Y %D ren A6 A7 ==> (Y',θ') Y' %D ren B0 B1 ==> 𝐛X^T 𝐛X %D ren C0 C1 ==> (TX,μX) (X,ξ) %D ren D1 ==> TX %D ren D2 D3 ==> Y TY %D ren E1 ==> X %D ren E2 E3 ==> (TX,μ) TX %D ren E4 E5 ==> (Y,θ) Y %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l Tf %D A1 A3 -> .plabel= r f %D A2 A3 <-| %D A4 A5 |-> %D A4 A6 -> %D A5 A7 -> %D A6 A7 |-> %D B0 B1 <- sl^ .plabel= a F^T %D B0 B1 -> sl_ .plabel= b G^T %D %D C0 C1 -> .plabel= l \sm{ε^T(X,ξ):=\\ξ} %D %D D1 D2 -> .plabel= a \ovl{f} %D D1 D3 -> .plabel= r Tf %D D2 D3 <- .plabel= b θ %D %D E1 E3 -> .plabel= r \sm{η^TX:=\\ηX\\\text{(univ)}} %D E2 E3 |-> %D E2 E4 -> .plabel= l \sm{∃!\ovl{f}:=\\θ·Tf} %D E3 E5 -> .plabel= r \ovl{f} %D E4 E5 |-> %D E1 E5 -> .slide= 35pt .plabel= r ∀f %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % _ ___ _ _ _ ____ % | |/ / | ___(_)___| (_) / ___| % | ' /| |/ _ \ / __| | | | | % | . \| | __/ \__ \ | | | |___ % |_|\_\_|\___|_|___/_|_| \____| % % «kleisli-construction» (to ".kleisli-construction") % (find-mcdsobralpage (+ -212 220) "1.6. The Kleisli construction") % (find-mcdsobraltext (+ -212 220) "1.6. The Kleisli construction") % (mdsp 4 "kleisli-construction") % (mds "kleisli-construction") \subsection*{1.6. The Kleisli construction} (Page 220): %D diagram ?? %D 2Dx 100 +20 +20 +20 +35 %D 2D 100 A0 F0 R0 %D 2D %D 2D +20 B0 G0 %D 2D +10 R1 %D 2D +10 B1 G1 %D 2D %D 2D +20 C0 H0 %D 2D +10 R2 %D 2D +10 C1 H1 %D 2D %D 2D +20 D0 I0 %D 2D %D 2D +20 D1 I1 R3 %D 2D %D 2D +20 D2 I3 I2 %D 2D %D 2D +20 E0 J0 %D 2D %D ren A0 F0 ==> X X %D ren B0 B1 G0 G1 ==> X Y X TY %D ren C0 C1 H0 H1 ==> X X X TX %D ren D0 D1 D2 I0 I1 I2 I3 ==> X Y Z X TY T^2X TZ %D ren E0 J0 ==> 𝐛X_T 𝐛X %D %D (( A0 place %D B0 B1 -> .plabel= l f %D C0 C1 -> .plabel= l \id_X %D D0 D1 -> .plabel= l f %D D1 D2 -> .plabel= l g %D E0 place %D %D F0 place %D G0 G1 -> .plabel= r f %D H0 H1 -> .plabel= r η_X %D I0 I1 -> .plabel= r f %D I1 I2 -> .plabel= r Tg %D I2 I3 -> .plabel= b μ_Z %D J0 xy+= 10 0 place %D %D R0 .tex= \defobjs place %D R1 .tex= \defhoms place %D R2 .tex= \defids place %D R3 .tex= \defcomp place %D )) %D enddiagram %D $$\pu \def\MLL#1#2#3#4{\begin{array}{l} #1\\ #2 \\ #3 \\ #4 \end{array}} \def\ML#1#2{\begin{array}{l} #1\\ #2 \end{array}} \def\MC#1#2{\begin{array}{l} #1\\ #2 \end{array}} \def\MR#1#2{\begin{array}{r} #1\\ #2 \end{array}} \def\defobjs{\begin{array}{l} \Objs(𝐛X_T) := \\ \Objs(𝐛X) \\ \end{array} } \def\defhoms{\begin{array}{l} \Hom_{𝐛X_T}(X,Y) := \\ \Hom_{𝐛X}(X,TY) \\ f:X→Y \text{ in } 𝐛X_T := \\ f:X→TY \text{ in } 𝐛X \\ \end{array} } \def\defids {\begin{array}{l} \id_{𝐛X_T}(X) := \\ η_X \\ \end{array} } \def\defcomp{\begin{array}{c} g·f \text{ in } 𝐛X_T := \\ μ_Z·Tg·f \text{ in } 𝐛X \\ \end{array} } \diag{??} $$ \newpage % _ ___ _ _ _ _ _ % | |/ / | ___(_)___| (_) __ _ __| |(_) % | ' /| |/ _ \ / __| | | / _` |/ _` || | % | . \| | __/ \__ \ | | | (_| | (_| || | % |_|\_\_|\___|_|___/_|_| \__,_|\__,_|/ | % |__/ % % «kleisli-adjunction» (to ".kleisli-adjunction") % (mdsp 4 "kleisli-adjunction") % (mds "kleisli-adjunction") % (find-mcdsobralpage (+ -212 221) "Kleisli adjunction") % (find-mcdsobraltext (+ -212 221) "Kleisli adjunction") \section*{The Kleisli adjunction} (Page 221): For a given monad $T$ there exists the Kleisli adjunction... \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020macdonaldsobral veryclean make -f 2019.mk STEM=2020macdonaldsobral pdf % Local Variables: % coding: utf-8-unix % ee-tla: "mds" % End: