Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020bell-lst.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020bell-lst.tex" :end)) % (defun D () (interactive) (find-pdf-page "~/LATEX/2020bell-lst.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020bell-lst.pdf")) % (defun e () (interactive) (find-LATEX "2020bell-lst.tex")) % (defun u () (interactive) (find-latex-upload-links "2020bell-lst")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020bell-lst.pdf") % (find-sh0 "cp -v ~/LATEX/2020bell-lst.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020bell-lst.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020bell-lst.pdf % file:///tmp/2020bell-lst.pdf % file:///tmp/pen/2020bell-lst.pdf % http://angg.twu.net/LATEX/2020bell-lst.pdf % (find-LATEX "2019.mk") % «.3._local_set_theory» (to "3._local_set_theory") % «.3.8._elim-ex-unique» (to "3.8._elim-ex-unique") % «.5._from_logic_to_sheaves» (to "5._from_logic_to_sheaves") % «.5.1.» (to "5.1.") % «.5.1.(1)_my_proof» (to "5.1.(1)_my_proof") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{indentfirst} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\True {\textit{true}} \def\False{\textit{false}} % (find-belltpage (+ 14 70) "Logic operations, axioms and inference rules") \def\L{\text{L}} % (find-belltpage (+ 14 71) "basic axioms") \def\Taut{\text{Taut}} \def\Unit{\text{Unit}} \def\Equa{\text{Equa}} \def\Produ{\text{Produ}} \def\Compr{\text{Compr}} % (find-belltpage (+ 14 71) "rules of inference") \def\Thin {\text{Thin}} \def\Cut {\text{Cut}} \def\Subst{\text{Subst}} \def\Ext {\text{Ext}} \def\Equiv{\text{Equiv}} % (find-belltpage (+ 14 69) "(T6)") % \setofsc is like \setofst but uses a colon instead of a "such that" bar \def\setofc#1#2{\{\,#1\;:\;#2\,\}} \def\setofc#1#2{\{\,#1\,:\,#2\,\}} \def\setofc#1#2{\{\,#1 : #2\,\}} {\setlength{\parindent}{0em} \footnotesize Notes on Bell's ``Toposes and Local Set Theories'' (Oxford, 1988). \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020bell-lst.pdf} \ssk See: \url{http://angg.twu.net/LATEX/2020favorite-conventions.pdf} \url{http://angg.twu.net/math-b.html\#favorite-conventions} I wrote these notes mostly to test if the conventions above are good enough. } % «3._local_set_theory» (to ".3._local_set_theory") \section*{3. Local Set Theories} (Page 70): $$\begin{tabular}{llll} (L1) & $α⇔β$ & for & $α=β$ \\ (L2) & $\True$ & for & $*=*$ \\ (L3) & $α∧β$ & for & $〈α,β〉 = 〈\True,\True〉$ \\ (L4) & $α⇒β$ & for & $(α∧β)⇔α$ \\ (L5) & $∀xα$ & for & $\setofc{x}{α} = \setofc{x}{\True}$ \\ (L6) & $\False$ & for & $∀ω.ω$ \\ (L7) & $¬α$ & for & $α⇒\False$ \\ (L8) & $α∨β$ & for & $∀ω[(α⇒ω∧β⇒ω)⇒ω]$ \\ (L9) & $∃xα$ & for & $∀ω[∀x(α⇒ω)⇒ω]$ \\ \end{tabular} $$ (Page 71): % (find-belltpage (+ 14 71) "basic axioms") % (find-belltpage (+ 14 71) "rules of inference") Basic axioms (left) and rules of inference (right): % %: %: ---\Taut %: α:α %: %: ^Taut %: %: ----\Unit %: :x_1=* %: %: ^Unit %: %: -----------------\Equa %: x=y,α(z/x):α(z/y) %: %: ^Equa %: %: -----------------\Produ %: :(〈x_1,\ldots,x_n〉)_i=x_i %: %: ^Produ1 %: %: -----------------\Produ %: :x=〈(x)_1,\ldots,(x)_n)〉 %: %: ^Produ2 %: %: -----------------\Compr %: :x∈\setofc{x}{α}⇔α %: %: ^Compr %: %: %: Γ:α %: -----\Thin %: β,Γ:α %: %: ^Thin %: %: Γ:α α,Γ:β %: -----------\Cut %: Γ:β %: %: ^Cut %: %: Γ:α %: ------------\Subst %: Γ(x/τ):α(x/τ) %: %: ^Subst %: %: Γ:x∈σ⇔x∈τ %: ---------\Ext %: Γ:σ=τ %: %: ^Ext %: %: α,Γ:β β,Γ:α %: ---------\Equiv %: Γ:α⇔β %: %: ^Equiv %: $$\pu \begin{array}{c} \ded{Taut} \\ \\ \ded{Unit} \\ \\ \ded{Equa} \\ \\ \ded{Produ1} \\ \\ \ded{Produ2} \\ \\ \ded{Compr} \\ \end{array} \qquad \begin{array}{c} \ded{Thin} \\ \\ \ded{Cut} \\ \\ \ded{Subst} \\ \\ \ded{Ext} \\ \\ \ded{Equiv} \\ \\ \end{array} $$ (Page 71): (3.1.5) (i) and (ii): % %: %: ----\Unit %: :*=* %: ------(\L2) %: :\True %: ---\Taut -------\Thin %: α:α α:\True %: ---------\Thin ---------\Thin %: \True,α:α α,α:\True %: --------- -------------------------\Equiv %: \True,α:α α,α:\True α:α⇔\True %: --------------------- ---------(\L1) %: α:α=\True α:α=\True %: %: ^p73.1 ^p73.1-my %: %: %: %: %: %: %: %: %: %: %: %: %: %: %: %: $$\pu \ded{p73.1} \quad \squigto \quad % \qquad \ded{p73.1-my} $$ %: %: %: ω=ω',ω':ω %: --------------- ------ %: α=\True,\True:α :\True %: ------------------------ %: α=\True:α %: %: ^p73.2 %: %: ---------\Equa %: ω=ω',ω':ω %: ---------------\Subst %: α=\True,\True:α %: ====== --------------- %: :\True \True,α=\True:α %: --------------------------\Cut %: α=\True:α %: %: ^p73.2-my %: %: $$\pu \ded{p73.2} \quad \squigto \quad % \qquad \ded{p73.2-my} $$ % (find-belltpage (+ 14 68) "3. Local Set Theories") % (find-belltpage (+ 14 73) "3.1 Conjunction") \newpage % _____ _ _ _____ _ % | ____| (_)_ __ ___ | ____|_ _| | % | _| | | | '_ ` _ \ | _| \ \/ / | % | |___| | | | | | | | | |___ > <|_| % |_____|_|_|_| |_| |_| |_____/_/\_(_) % % «3.8._elim-ex-unique» (to ".3.8._elim-ex-unique") % (lstp 3 "3.8._elim-ex-unique") % (lst "3.8._elim-ex-unique") % (find-books "__cats/__cats.el" "bell-lst") % (find-belltpage (+ 14 81) "Our final task in this section") % % (find-books "__cats/__cats.el" "taylor") % (find-taylorpfmpage (+ 14 61) "8. (...) proof-box rules for Ex!") % % (find-books "__logic/__logic.el" "mendelson") \subsection*{3.8 Eliminability of descriptions} (Page 81): Our final task in this section is to show that local set theories satisfy {\sl eliminability of descriptions for formulae} and {\sl for terms of power type}. To explain this, define the {\sl unique existential quantifier} $∃!$ by writing % $$∃!xα \quad \text{for} \quad ∃x(α∧∀y(α(x/y)⇒x=y)),$$ % where $y$ is different from $x$ and not free in $α$. Then, if $α(x)$ is any formula and $x$ is any variable either of type $Ω$ or of power type, we will exhibit a term $τ$ of the same type as $x$, for which we have % $$∃!xα⊢α(x/τ)$$ % $τ$ is thus an explicit term satisfying the description: `the unique $x$ such that $α$'. \msk {\bf 3.8. Proposition} (Eliminability of descriptions for formulae) % $$∃!ωα ⊢ α(ω/α(ω/\True))$$ % ____ _ % / ___|| |__ ___ __ ___ _____ ___ % \___ \| '_ \ / _ \/ _` \ \ / / _ \/ __| % ___) | | | | __/ (_| |\ V / __/\__ \ % |____/|_| |_|\___|\__,_| \_/ \___||___/ % \newpage % «5._from_logic_to_sheaves» (to ".5._from_logic_to_sheaves") % (lstp 3 "5._from_logic_to_sheaves") % (lst "5._from_logic_to_sheaves") % (find-books "__cats/__cats.el" "bell-lst") % (find-belltpage (+ 14 162) "5. From Logic to Sheaves") % (find-belltpage (+ 14 162) "truth-set") \section*{5. From Logic to Sheaves} (Page 162): {\bf Truth-sets, modalities, and universal closure operations} (...) More generally, an $S$-set $T$ such that $⊢T⊆Ω$ is called a {\sl truth-set} in $S$ if it satisfies the same conditions, viz.: \msk $\begin{array}{rl} (tr_0) & ⊢T⊆Ω \\ (tr_1) & ⊢\True∈T \\ (tr_2) & α⊢β \quad \text{implies} \quad α∈T⊢β∈T \\ (tr_3) & (α∈T)∈T⊢α∈T \\ \end{array} $ Let's write $α^*$ for $α∈T$. We can rewrite the above as: $\begin{array}{rl} (tr_1) & ⊢\True^* \\ (tr_2) & α⊢β \quad \text{implies} \quad α^*⊢β^* \\ (tr_3) & α^{**}⊢α^* \\ \end{array} $ \msk % ____ _ % | ___| / | % |___ \ | | % ___) || | % |____(_)_| % % «5.1.» (to ".5.1.") % (lstp 3 "5.1.") % (lst "5.1.") % (find-belltpage (+ 14 162) "5.1. Proposition") {\bf 5.1. Proposition.} Let $T$ be a truth-set in $S$. Then: $\begin{array}{rl} (i) & α∈T,β∈T ⊢ α∧β∈T, \\ (ii) & α∈T, α⇒β∈T ⊢ β∈T, \\ (iii) & α⇒β ⊢ α∈T⇒β∈T \\ \end{array} $ i.e., $\begin{array}{rl} (i) & α^*,β^*⊢(α∧β)^* \\ (ii) & α^*, (α⇒β)^* ⊢ β^* \\ (iii) & α⇒β ⊢ α^*⇒β^* \\ \end{array} $ \msk Proof. (i) Let us write $α^*$ for $α∈T$. Then from $α⊢β=α∧β$ we deduce $α⊢β^*=(α∧β)^*$, whence $α⊢β^*⇒(α∧β)^*$, so that % $$α,β^*⊢(α∧β)^*. \qquad (1)$$ % Replacing $α$ by $α^*$ gives % $$α^*,β^*⊢(α^*∧β)^*, \qquad (2)$$ % and interchanging $α$ and $β$ in (1) yields % $$α^*,β^*⊢(α^*∧β)^*, \qquad (3)$$ % % (find-belltpage (+ 14 162) "5.1. Proposition") (3) gives $...$, so by (tr2) $...$, whence $...$ by (tr3). This, together with (2), gives $...$. \newpage % ____ _ _____ % | ___| / | / (_) \ _ __ ___ _ _ % |___ \ | | | || || | | '_ ` _ \| | | | % ___) || |_ | || || | | | | | | | |_| | % |____(_)_(_) | ||_|| | |_| |_| |_|\__, | % \_\ /_/ |___/ % % «5.1.(1)_my_proof» (to ".5.1.(1)_my_proof") % (lstp 4 "5.1.(1)_my_proof") % (lst "5.1.(1)_my_proof") {\bf My proof of 5.1.(1).} %: %: ----- ----- %: α∧β⊢β \a∧β⊢β %: ------- ------ ----------- -------- %: α∧β⊢α∧β ⊢α∧β⇒β \a∧β⊢\a∧β ⊢\a∧β⇒β %: ------- ------- ----------- ----------- %: α⊢β⇒α∧β α⊢α∧β⇒β \a⊢β⇒\a∧β \a⊢\a∧β⇒β %: ------------------ -------------------------- %: α⊢β=α∧β \a⊢β=\a∧β %: ------------- --------------- %: α⊢β^*=(α∧β)^* \a⊢β^*=(\a∧β)^* %: ------------- ================= --------------- %: α∧β^*⊢(α∧β)^* α^*∧β^*⊢(α^*∧β)^* \a∧β^*⊢(\a∧β)^* %: %: ^5.1.(i)_a ^5.1.(i)_b 5.1.(i)_awithdef %: $$\pu \begin{array}{c} \ded{5.1.(i)_a} \qquad \ded{5.1.(i)_b} \\ \end{array} $$ {\bf Old stuff:} %: %: %: α⊢β=α{∧}β α^*⊢β=α^*{∧}β %: --------------- --------------- %: α⊢β^*=(α{∧}β)^* α^*⊢β^*=(α^*{∧}β)^* %: ----------------- ----------------- %: α⊢β^*{⇒}(α{∧}β)^* α^*⊢β^*{⇒}(α^*{∧}β)^* %: ----------------- ----------------- %: α,β^*⊢(α{∧}β)^* α^*,β^*⊢(α^*{∧}β)^* %: %: ^f1 ^f2 %: $$\pu \begin{array}{c} \ded{f1} \qquad \ded{f2} \\ \end{array} $$ %: %: ----------- ----------- %: α⊢β=α{∧}β α^*⊢β=α^*{∧}β β⊢α=α{∧}β %: --------------- ----------------- ----------------- %: α⊢β^*=(α{∧}β)^* α^*⊢β^*=(α^*{∧}β)^* β⊢α^*=(α{∧}β)^* %: ----------------- --------------------- ----------------- %: α⊢β^*{⇒}(α{∧}β)^* α^*⊢β^*{→}(α^*{∧}β)^* β⊢α^*{→}(α{∧}β)^* %: ----------------- --------------------- ----------------- %: α,β^*⊢(α{∧}β)^* α^*,β^*⊢(α^*{∧}β)^* α^*,β⊢(α{∧}β)^* %: ----------------- -------------------- ----------------- %: α{∧}β^*⊢(α{∧}β)^* α^*{∧}β^*⊢(α^*{∧}β)^* α^*{∧}β⊢(α{∧}β)^* %: ----------------- --------------------- ----------------- %: (α{∧}β^*)^*⊢(α{∧}β)^{**} (α^*{∧}β^*)^*⊢(α^*{∧}β)^{**} (α^*{∧}β)^*⊢(α{∧}β)^{**} %: ----------------- ----------------- ----------------- %: (α{∧}β^*)^*⊢(α{∧}β)^* (α^*{∧}β^*)^*⊢(α^*{∧}β)^* (α^*{∧}β)^*⊢(α{∧}β)^* %: %: ^foo1 ^foo2 ^foo3 %: $$\pu \begin{array}{c} \ded{foo1} \qquad \ded{foo2} \qquad \ded{foo3} \\ \end{array} $$ (What are these?) $(tr'_1) \qquad ⊢⊤^*$ $(tr'_2) \qquad α⊢β \qquad α^*⊢β^*$ $(tr'_3) \qquad α^{**}⊢α^*$ $(tr'_4) \qquad α⊢α^*$ \msk % (find-belltpage (+ 14 163) "modality") % (find-belltpage (+ 14 164) "universal closure operation") %: %: --------- --------- %: α{∧}β⊢α α{∧}β⊢β %: ======================== ======================== --------------- ---------- %: α^*{∧}β^*⊢(α^*{∧}β)^* (α^*{∧}β)^*⊢(α{∧}β)^* (α{∧}β)^*⊢α^* (α{∧}β)^*⊢β^* %: ---------------------------------------------------- -------------------------------- %: α^*{∧}β^*⊢(α{∧}β)^* (α{∧}β)^*⊢α^*{∧}β^* %: ------------------------------------------------------------------------------------ %: ⊢α^*{∧}β^*=(α{∧}β)^* %: %: ^foo4 %: %: ======================= %: ⊢α^*{∧}β^*=(α{∧}β)^* %: ----------------------------- %: ⊢(α^*{∧}β^*)^*=(α{∧}β)^{**} %: ----------------------------- %: ⊢(α^*{∧}β^*)^*=(α{∧}β)^* %: ======================= ----------------------------- %: ⊢α^*{∧}β^*=(α{∧}β)^* ⊢(α{∧}β)^*=(α^*{∧}β^*)^* %: ------------------------------------------------------- %: ⊢α^*{∧}β^*=(α{∧}β)^*=(α^*{∧}β^*)^* %: %: ^foo5 %: $$\pu \begin{array}{c} \ded{foo4} \\ \\ (i'): \quad \ded{foo5} \\ \end{array} $$ %: %: ------------ %: α,α{→}β⊢β %: ------------ %: α∧(α{→}β)⊢β %: -------------------- %: (α∧(α{→}β))^*⊢β^* %: -------------------- %: α^*∧(α{→}β)^*⊢β^* %: -------------------- %: α^*,(α{→}β)^*⊢β^* %: ------------------ -------------------- %: α{→}β⊢(α{→}β)^* (α{→}β)^*⊢α^*{→}β^* %: ---------------------------------------------- %: α{→}β⊢(α{→}β)^*⊢α^*{→}β^* %: %: ^bar1 %: %: %: ------------------- ---- %: α{→}β⊢(α{→}β)=⊤ ⊤∈T %: -------------------------- %: α{→}β⊢(α{→}β)∈T α{→}β⊢(α{→}β)^* %: %: %: ------- ---- %: α⊢α=⊤ ⊤∈T %: ------------- %: α⊢α∈T %: ------- %: α⊢α^* %: %: ^tr4 %: $$\pu \begin{array}{c} (0'): \quad \ded{tr4} \qquad (ii',iii'): \quad \ded{bar1} \\ \\ \end{array} $$ \newpage Notes from 2017... \msk \def\dt#1#2{\sm{#1\\#2}} \def\DT#1#2{\mat{#1\\↓\\#2}} \def\PDT#1#2{\pmat{#1\\↓\\#2}} \def\mt#1#2#3#4{\dt#1#2{↦}\dt#3#4} $Ω=\PDT{\{\dt00,\dt01,\dt11\}}{\{\dt·0,\dt·1\}}$ $\{⊤\}=\PDT{\{\dt11\}}{\{\dt·1\}}$ \msk $012$: \quad $μ=\PDT{\cmat{\mt0011,\, \mt0111,\, \mt1111}}{\cmat{\mt·0·1,\, \mt·1·1}}$ \quad $T=Ω=\PDT{\{\dt00,\dt01,\dt11\}}{\{\dt·0,\dt·1\}}$ \msk $0|12$: \quad $μ=\PDT{\cmat{\mt0000,\, \mt0111,\, \mt1111}}{\cmat{\mt·0·0,\, \mt·1·1}}$ \quad $T=\PDT{\{\dt01,\dt11\}}{\{\dt·1\}}$ \msk $01|2$: \quad $μ=\PDT{\cmat{\mt0001,\, \mt0101,\, \mt1111}}{\cmat{\mt·0·1,\, \mt·1·1}}$ \quad $T=\PDT{\{\dt11\}}{\{\dt·0,\dt·1\}}$ \msk $0|1|2$: \quad $μ=\PDT{\cmat{\mt0000,\, \mt0101,\, \mt1111}}{\cmat{\mt·0·0,\, \mt·1·1}}$ \quad $T=\{⊤\}=\PDT{\{\dt11\}}{\{\dt·1\}}$ % (find-angg "LATEX/2017bell.tex") % Gente, posso fazer uma pergunta sobre Local Set Theories? Se voces nao % souberem eu pergunto no Zulip Chat, mas prefiro perguntar aqui % primeiro... % % Na pagina 71 o Bell define "sequents" e 5 regras de inferencia % basicas, e a partir dai' ele mostra um monte de arvores de deducao % nesse sistema dele, e vai definindo um monte de regras derivadas... % % Em algum lugar bem mais adiante - num capitulo que eu entendo mal - % ele define a Local Set Theory associada a um topos dado qualquer, e % acho que so' a partir dai' esses sequentes vao passar a ter uma % semantica clara. % % Digamos que a gente esta' num topos E que a gente escolheu, e que a % gente escolheu valores para P e Q - P e Q sao valores de verdade. % % (Eu tenho tentado montar sempre exemplos concretos... por exemplo, na % pagina 12 daqui - http://angg.twu.net/LATEX/2017planar-has-1.pdf - tem % umas contas com desenhos em que eu fixo uma algebra de Heyting, % escolho valores pra P e Q nessa HA - P := 10 e Q := 01 - e ai' calculo % o valor de uma expressao grande envolvendo P e Q...) % % Entao, digamos que a gente escolheu o topos E e valores de verdade P e % Q. % % A semantica para o sequente P:Q vai dizer que o "valor" de P:Q e' um % valor de verdade "classico", i.e., ou "verdadeiro" ou "falso"? Ou vai % dizer que o valor de P:Q vai ser um valor de verdade do topos, podendo % ser algum valor intermediario entre "falso" e "verdadeiro"? % % Obs: talvez eu devesse ter usado "|-_{S}" ao inves de ":" em alguns % lugares... % % Obs 2: o Bell prova um "soundness theorem" nas paginas 97 ate' 103, % que nao sei se responde a minha pergunta - ainda nao entendi qual e' a % semantica de cada sequente P:Q e de cada arvore de derivacao... % % José Alvim % puts, eu não sei não. Vou ter que pensar % % Eduardo Ochs % Tou achando que as duas semanticas funcionam, mas a em que o valor de % verdade de cada sequente e' so' ou verdadeiro ou falso e' mais % parecida com a que o Bell usa... %\printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020bell-lst veryclean make -f 2019.mk STEM=2020bell-lst pdf % Local Variables: % coding: utf-8-unix % ee-tla: "lst" % End: