Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017bell.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017bell.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017bell.pdf")) % (defun e () (interactive) (find-LATEX "2017bell.tex")) % (defun u () (interactive) (find-latex-upload-links "2017bell")) % (find-xpdfpage "~/LATEX/2017bell.pdf") % (find-sh0 "cp -v ~/LATEX/2017bell.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017bell.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017bell.pdf % file:///tmp/2017bell.pdf % file:///tmp/pen/2017bell.pdf % http://angg.twu.net/LATEX/2017bell.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % (find-books "__cats/__cats.el" "bell") % (find-belltpage (+ 14 162) "truth-set") % (find-belltpage (+ 14 163) "modality") % (find-belltpage (+ 14 164) "universal closure operation") $(tr_0) \qquad ⊢T⊆Ω$ $(tr_1) \qquad ⊢⊤∈T$ $(tr_2) \qquad α⊢β \qquad α∈T⊢β∈T$ $(tr_3) \qquad (α∈T)∈T⊢α∈T$ \msk $(tr'_1) \qquad ⊢⊤^*$ $(tr'_2) \qquad α⊢β \qquad α^*⊢β^*$ $(tr'_3) \qquad α^{**}⊢α^*$ $(tr'_4) \qquad α⊢α^*$ \msk %: %: ----------- ----------- ----------- %: α⊢β=α{∧}β α^*⊢β=α^*{∧}β β⊢α=α{∧}β %: ----------------- ----------------- ----------------- %: α⊢β^*=(α{∧}β)^* α^*⊢β^*=(α^*{∧}β)^* β⊢α^*=(α{∧}β)^* %: ----------------- ----------------- ----------------- %: α⊢β^*{→}(α{∧}β)^* α^*⊢β^*{→}(α^*{∧}β)^* β⊢α^*{→}(α{∧}β)^* %: ----------------- ----------------- ----------------- %: α,β^*⊢(α{∧}β)^* α^*,β^*⊢(α^*{∧}β)^* α^*,β⊢(α{∧}β)^* %: ----------------- ----------------- ----------------- %: α{∧}β^*⊢(α{∧}β)^* α^*{∧}β^*⊢(α^*{∧}β)^* α^*{∧}β⊢(α{∧}β)^* %: ----------------- ----------------- ----------------- %: (α{∧}β^*)^*⊢(α{∧}β)^{**} (α^*{∧}β^*)^*⊢(α^*{∧}β)^{**} (α^*{∧}β)^*⊢(α{∧}β)^{**} %: ----------------- ----------------- ----------------- %: (α{∧}β^*)^*⊢(α{∧}β)^* (α^*{∧}β^*)^*⊢(α^*{∧}β)^* (α^*{∧}β)^*⊢(α{∧}β)^* %: %: ^foo1 ^foo2 ^foo3 %: %: %: --------- --------- %: α{∧}β⊢α α{∧}β⊢β %: ======================== ======================== --------------- ---------- %: α^*{∧}β^*⊢(α^*{∧}β)^* (α^*{∧}β)^*⊢(α{∧}β)^* (α{∧}β)^*⊢α^* (α{∧}β)^*⊢β^* %: ---------------------------------------------------- -------------------------------- %: α^*{∧}β^*⊢(α{∧}β)^* (α{∧}β)^*⊢α^*{∧}β^* %: ------------------------------------------------------------------------------------ %: ⊢α^*{∧}β^*=(α{∧}β)^* %: %: ^foo4 %: %: ======================= %: ⊢α^*{∧}β^*=(α{∧}β)^* %: ----------------------------- %: ⊢(α^*{∧}β^*)^*=(α{∧}β)^{**} %: ----------------------------- %: ⊢(α^*{∧}β^*)^*=(α{∧}β)^* %: ======================= ----------------------------- %: ⊢α^*{∧}β^*=(α{∧}β)^* ⊢(α{∧}β)^*=(α^*{∧}β^*)^* %: ------------------------------------------------------- %: ⊢α^*{∧}β^*=(α{∧}β)^*=(α^*{∧}β^*)^* %: %: ^foo5 %: %: ------------ %: α,α{→}β⊢β %: ------------ %: α∧(α{→}β)⊢β %: -------------------- %: (α∧(α{→}β))^*⊢β^* %: -------------------- %: α^*∧(α{→}β)^*⊢β^* %: -------------------- %: α^*,(α{→}β)^*⊢β^* %: ------------------ -------------------- %: α{→}β⊢(α{→}β)^* (α{→}β)^*⊢α^*{→}β^* %: ---------------------------------------------- %: α{→}β⊢(α{→}β)^*⊢α^*{→}β^* %: %: ^bar1 %: %: %: ------------------- ---- %: α{→}β⊢(α{→}β)=⊤ ⊤∈T %: -------------------------- %: α{→}β⊢(α{→}β)∈T α{→}β⊢(α{→}β)^* %: %: %: ------- ---- %: α⊢α=⊤ ⊤∈T %: ------------- %: α⊢α∈T %: ------- %: α⊢α^* %: %: ^tr4 %: $$\pu \begin{array}{c} \ded{foo1} \qquad \ded{foo2} \qquad \ded{foo3} \\ \\ \ded{foo4} \\ \\ (i'): \quad \ded{foo5} \\ \\ (0'): \quad \ded{tr4} \qquad (ii',iii'): \quad \ded{bar1} \\ \\ \end{array} $$ \newpage \def\dt#1#2{\sm{#1\\#2}} \def\DT#1#2{\mat{#1\\↓\\#2}} \def\PDT#1#2{\pmat{#1\\↓\\#2}} \def\mt#1#2#3#4{\dt#1#2{↦}\dt#3#4} $Ω=\PDT{\{\dt00,\dt01,\dt11\}}{\{\dt·0,\dt·1\}}$ $\{⊤\}=\PDT{\{\dt11\}}{\{\dt·1\}}$ \msk $012$: \quad $μ=\PDT{\cmat{\mt0011,\, \mt0111,\, \mt1111}}{\cmat{\mt·0·1,\, \mt·1·1}}$ \quad $T=Ω=\PDT{\{\dt00,\dt01,\dt11\}}{\{\dt·0,\dt·1\}}$ \msk $0|12$: \quad $μ=\PDT{\cmat{\mt0000,\, \mt0111,\, \mt1111}}{\cmat{\mt·0·0,\, \mt·1·1}}$ \quad $T=\PDT{\{\dt01,\dt11\}}{\{\dt·1\}}$ \msk $01|2$: \quad $μ=\PDT{\cmat{\mt0001,\, \mt0101,\, \mt1111}}{\cmat{\mt·0·1,\, \mt·1·1}}$ \quad $T=\PDT{\{\dt11\}}{\{\dt·0,\dt·1\}}$ \msk $0|1|2$: \quad $μ=\PDT{\cmat{\mt0000,\, \mt0101,\, \mt1111}}{\cmat{\mt·0·0,\, \mt·1·1}}$ \quad $T=\{⊤\}=\PDT{\{\dt11\}}{\{\dt·1\}}$ \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: