Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017ebl-handouts.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017ebl-handouts.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017ebl-handouts.pdf")) % (defun e () (interactive) (find-LATEX "2017ebl-handouts.tex")) % (defun u () (interactive) (find-latex-upload-links "2017ebl-handouts")) % (find-xpdfpage "~/LATEX/2017ebl-handouts.pdf") % (find-sh0 "cp -v ~/LATEX/2017ebl-handouts.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017ebl-handouts.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017ebl-handouts.pdf % file:///tmp/2017ebl-handouts.pdf % file:///tmp/pen/2017ebl-handouts.pdf % http://angg.twu.net/LATEX/2017ebl-handouts.pdf % «.Header» (to "Header") % % «.LRcoords» (to "LRcoords") % «.Logic» (to "Logic") % «.NonTaut» (to "NonTaut") % «.BruteForce» (to "BruteForce") % % «.Body» (to "Body") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") \usepackage{boxedminipage} % (find-es "tex" "boxedminipage") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") % (find-angg ".emacs.papers" "latexgeom") % (find-LATEXfile "2017ebl-slides.tex" "geometry") % (find-LATEXfile "2016-2-GA-VR.tex" "{geometry}") \usepackage[a4paper, landscape, %total={6.5in,4in}, %textwidth=4in, paperwidth=4.5in, %textheight=5in, paperheight=4.5in, %a4paper, %top=1.5cm, bottom=.5cm, left=1.5cm, right=1.5cm, includefoot top=2cm, bottom=1.5cm, left=2cm, right=2cm, includefoot ]{geometry} \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} \directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\LR{\mathbb{LR}} \def\IPL{\text{IPL}} \def\und#1#2{\underbrace{#1}_{#2}} \def\o#1{\mathop{\mathsf{#1}}} \def\o#1{\mathbin{\mathsf{#1}}} \setlength{\fboxsep}{5pt} % (find-LATEX "2017planar-has.tex" "prop-calc-ZHA") % (find-LATEX "2017planar-has.tex" "prop-calc-ZHA" "zdemorgan") % (find-LATEX "2017planar-has.tex" "HAs") % (phap 10 "HAs") % _ _ _ % | | | | ___ __ _ __| | ___ _ __ % | |_| |/ _ \/ _` |/ _` |/ _ \ '__| % | _ | __/ (_| | (_| | __/ | % |_| |_|\___|\__,_|\__,_|\___|_| % % «Header» (to ".Header") \thispagestyle{empty} % (find-es "tex" "thispagestyle") { \setlength{\parindent}{0pt} \footnotesize \par Planar Heyting Algebras for Children \par Eduardo Ochs - EBL2017 - Pirenópolis, may 2017 \par \url{http://angg.twu.net/math-b.html\#ebl-2017} \par \url{http://angg.twu.net/math-b.html\#zhas-for-children-2} \par \url{http://angg.twu.net/LATEX/2017planar-has.pdf} (paper) \par \url{http://angg.twu.net/LATEX/2017ebl-slides.pdf} (slides) \par \url{http://angg.twu.net/LATEX/2017ebl-handouts.pdf} {\bf (these handouts)} \par Version: \shorttoday{} \hours } \bsk % _ ____ _ % | | | _ \ ___ ___ ___ _ __ __| |___ % | | | |_) / __/ _ \ / _ \| '__/ _` / __| % | |___| _ < (_| (_) | (_) | | | (_| \__ \ % |_____|_| \_\___\___/ \___/|_| \__,_|___/ % % «LRcoords» (to ".LRcoords") \newsavebox{\LRcoords} \savebox {\LRcoords}{% \begin{boxedminipage}[t]{16.5em} % (ebsp 4 "LR-coords") % (ebs "LR-coords") % \par {\bf LR-coordinates and ZHAs:} \msk \par $\ang{l,r} = (0,0) + l\und{\VEC{-1,1}}{\nwarrow} + r\und{\VEC{1,1}}{\nearrow}$ \par Shorthand: $lr = \ang{l,r}$. \par $\N^2⊂\Z^2$ is a quarter-plane. \par $\LR⊂\Z^2$ is a ``quarter-plane \par \quad turned $45°$ to the left'': \par $\LR = \{\ang{l,r} \;|\; l,r∈\N \}$. \par An LRSet is a finite, non-empty \par subset of $\LR$ containing $(0,0)$. \par ZHAs are LRSets obeying extra \par conditions... \msk \par A ``height-left-right-wall'' $(h,L,R)$ \par generates this ZHA: \par $\{ (x,y)∈\LR \;|\; y{≤}h, L(y){≤}x{≤}R(y) \}$ \msk %L mpnew({def="zhab", scale="7pt", meta="s"}, "12321L"):addlrs():output() %L mpnew({def="zhaxy", scale="11pt", meta="s"}, "12321L"):addxys():output() \pu Example: \ssk $ \pmat{9, \csm{(5,-1), \\ (4,0), \\ (3,-1), \\ (2,-2), \\ (1,-1), \\ (0,0) }, \csm{(5,-1), \\ (4,0), \\ (3, 1), \\ (2, 2), \\ (1, 1), \\ (0,0) } } \squigto $ \msk \par $ \squigto\; \csm{\zhaxy} \;\squigto\; \zhab $ \msk A ZHA is made of all points in $\LR$ between a left and a right wall. Theorem: every ZHA is a Heyting Algebra. Details: paper, secs.1--9. \end{boxedminipage}% } % \usebox {\LRcoords} % _ _ _ ______ _ _ % | | ___ __ _(_) ___ (_)_ __ __ _ |__ / | | | / \ % | | / _ \ / _` | |/ __| | | '_ \ / _` | / /| |_| | / _ \ % | |__| (_) | (_| | | (__ | | | | | | (_| | / /_| _ |/ ___ \ % |_____\___/ \__, |_|\___| |_|_| |_| \__,_| /____|_| |_/_/ \_\ % |___/ % % «Logic» (to ".Logic") \newsavebox{\Logic} \savebox {\Logic}{% \begin{boxedminipage}[t]{16.5em} \par {\bf Logic in a ZHA} \par Abbreviations: $\o{b}$, $\o{l}$, $\o{r}$, $\o{a}$ mean \par $\o{below}$, $\o{leftof}$, $\o{rightof}$, $\o{above}$. \msk \par In a ZHA $Ω$ we have: \msk $\begin{array}{rcl} ⊤ &:=& \sup(Ω) \\ ⊥ &:=& 00 \\ ab∧cd &:=& \min(a,c)\min(b,d) \\ ab∨cd &:=& \max(a,c)\max(b,d) \\ cd→ef &:=& \\ \multicolumn{3}{c}{ \left(\!\! \begin{array}{lllll} \o{if} & cd \o{b} ef & \o{then} & ⊤ \\ \o{elseif} & cd \o{l} ef & \o{then} & \o{ne}(ef) \\ \o{elseif} & cd \o{r} ef & \o{then} & \o{nw}(ef) \\ \o{elseif} & cd \o{a} ef & \o{then} & ef \\ \o{end} \\ \end{array} \!\!\! \right) } \end{array} $ \msk where: \msk $ \def\foo#1#2#3{cd\o{#1}ef &:=& c{#2}e ∧ d{#3}f} \def\foo#1#2#3{cd\o{#1}ef &:=& c #2 e ∧ d #3 f} \;\;\; \begin{array}{ccl} \foo b≤≤ \\ \foo l≥≤ \\ \foo r≤≥ \\ \foo r≤≤ \\ \end{array} $ \msk and $\o{ne}$ means ``go northeast as most as possible'', and $\o{nw}$ means ``go northwest as most as possible'' \msk Partial order: \msk $\;\;\; \begin{array}{rcl} ab≤cd &:=& a≤c∧b≤d \\ \end{array} $ \msk Theorem: $P≤(Q→R)$ iff $(P∧Q)≤R$ (with the weird `$→$' above). \end{boxedminipage}% } %\usebox{\Logic} % _ _ _ _ _ % | \ | | ___ _ __ | |_ __ _ _ _| |_ ___ | | ___ __ _ _ _ % | \| |/ _ \| '_ \ _____| __/ _` | | | | __/ _ \| |/ _ \ / _` | | | | % | |\ | (_) | | | |_____| || (_| | |_| | || (_) | | (_) | (_| | |_| | % |_| \_|\___/|_| |_| \__\__,_|\__,_|\__\___/|_|\___/ \__, |\__, | % |___/ |___/ % «NonTaut» (to ".NonTaut") \newsavebox{\NonTaut} \savebox {\NonTaut}{% \begin{boxedminipage}[t]{25em} {\bf Two non-tautologies} In this ZHA, with this valuation, %L mpa = mpnew({def="fooa", scale="7pt", meta="s"}, "12321L") %L mpb = mpnew({def="foob", scale="7pt", meta="s"}, "12321L"):addcuts("c") %L mpa = mpnew({def="fooa"}, "12321L") %L mpb = mpnew({def="foob"}, "12321L"):addcuts("c") %L mpa:addlrs():output() %L mpb:put(v"10", "P") %L mpb:put(v"01", "Q") %L mpb:output() %R local znotnotP = %R 1/ T \ %R | . | %R | . c | %R |b . a| %R | P . | %R \ F / %R local T = {F="⊥", T="⊤", a="P'", b="P''", c="→"} %R znotnotP:tozmp({def="znotnotP", scale="10pt", meta=nil}):addcells(T):addcontour():output() %R %R local zdemorgan = %R 1/ T \ %R | o | %R | . . | %R |q . p| %R | P Q | %R \ a / %R local T = {F="⊥", T="⊤", p="P'", q="Q'", a="∧", o="∨"} %R zdemorgan:tozmp({def="zdemorgan", scale="10pt", meta=nil}):addcells(T):addcontour():output() %R %R zdemorgan:tozmp({def="ohouse", scale="10pt", meta=nil}):addlrs():output() % %L -- ¬¬P→P %L ubs [[ %L ¬ ¬ P 10 u Pre 02 u Pre 20 u () → P 10 u Bin 12 u %L notnotP def output %L ]] %L %L -- ¬(P∧Q)→(¬P∨¬Q) %L ubs [[ %L ¬ P 10 u ∧ Q 01 u Bin 00 u () Pre 32 u %L → ¬ P 10 u Pre 02 u ∨ ¬ Q 01 u Pre 20 u Bin 22 u () Bin 22 u %L demorgan def output %L ]] \pu $H=\fooa \qquad v=\foob$ we have: \msk $\begin{array}{ccccl} \znotnotP && \mat{\notnotP} \\ \\ \zdemorgan && \mat{\demorgan} \\ \end{array} $ \msk ...these two classical tautologies are not ${=}⊤$ $({=}32)$ in $v$, so they are not true in all Heyting Algebras, and they can't be theorems of intuitionistic logic... \msk Note that $¬P = ¬10 = 10→00 = \o{ne}(00) = 02$ because $10 \o{below} 00$ is false and $10 \o{leftof} 00$ is true. \end{boxedminipage}% } %\usebox{\NonTaut} % ____ _ __ % | __ ) _ __ _ _| |_ ___ / _| ___ _ __ ___ ___ % | _ \| '__| | | | __/ _ \ | |_ / _ \| '__/ __/ _ \ % | |_) | | | |_| | || __/ | _| (_) | | | (_| __/ % |____/|_| \__,_|\__\___| |_| \___/|_| \___\___| % % «BruteForce» (to ".BruteForce") \newsavebox{\BruteForce} \savebox {\BruteForce}{% \begin{boxedminipage}[t]{23em} {\bf Calculating `$→$' by brute force} %R local z = ZHA.fromspec("123454321") %R local mpB = mpnew({def="fooB", scale="2pt", meta="t"}, "123454321"):addbullets():output() %R local mpQ = mpnew({def="fooQ", scale="6pt", meta="s"}, "123454321") %R local mpR = mpnew({def="fooR", scale="5pt", meta="s"}, "123454321") %R local mpA = mpnew({def="fooA", scale="5pt", meta="s"}, "123454321") %R mpQ:zhalrf ("P -> P:And (v'31') "):output() %R mpR:zhalrf0("P -> P:below(v'14') and 1 or 0"):output() %R mpA:zhalrf0("P -> P:below(v'11') and 1 or 0"):output() \pu If $H=\fooB$, $Q=31$ and $R=12$, then we can calculate $Q→R$ ($=14$) by: \msk $(\und{(\und{P ∧ \und{Q}{31}} {\sm{(λP.P∧31)= \\ \fooQ}} ) ≤ \und{R}{12} }{\sm{(λP.P∧31≤12)= \\ \fooR}} ) \;\;=\;\; (\und{P ≤ (\und{\und{Q}{31}→\und{R}{12}} {\sm{?????? \\ \\ \text{must be 14,} \\ \text{look below:}}} ) }{\sm{\text{copy the left side:} \\ \fooR}}) $ \msk Theorem: the formula for `$→$' in terms of $\o{b}$, $\o{l}$, $\o{r}$, $\o{a}$ yields the same results as the brute force method. \end{boxedminipage}% } %\usebox{\NonTaut} % ____ _ % | __ ) ___ __| |_ _ % | _ \ / _ \ / _` | | | | % | |_) | (_) | (_| | |_| | % |____/ \___/ \__,_|\__, | % |___/ % % «Body» (to ".Body") \noindent \hbox to \textwidth{\hss \resizebox{1.0\textwidth}{!}{% \usebox{\LRcoords} \usebox{\Logic} \usebox{\NonTaut} \usebox{\BruteForce} }% \hss} \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: