Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017-2-C2-VS.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017-2-C2-VS.tex" :end)) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017-2-C2-VS.pdf")) % (defun e () (interactive) (find-LATEX "2017-2-C2-VS.tex")) % (defun u () (interactive) (find-latex-upload-links "2017-2-C2-VS")) % (find-xpdfpage "~/LATEX/2017-2-C2-VS.pdf") % (find-sh0 "cp -v ~/LATEX/2017-2-C2-VS.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017-2-C2-VS.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017-2-C2-VS.pdf % file:///tmp/2017-2-C2-VS.pdf % file:///tmp/pen/2017-2-C2-VS.pdf % http://angg.twu.net/LATEX/2017-2-C2-VS.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} %\catcode`\^^J=10 %\directlua{dednat6dir = "dednat6/"} %\directlua{dofile(dednat6dir.."dednat6.lua")} %\directlua{texfile(tex.jobname)} %\directlua{verbose()} %%\directlua{output(preamble1)} %\def\expr#1{\directlua{output(tostring(#1))}} %\def\eval#1{\directlua{#1}} %\def\pu{\directlua{pu()}} %\directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") %\directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %%L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2017.2 \par VS - 19/dez/2017 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar % (find-angg "LATEX/2015-2-GA-P2.tex") 1) \T(Total: 3.0 pts) Calcule $$\Intx{a}{b}{x^3 \sqrt{1-x^2}}.$$ 3) \T(Total: 2.0 pts) Calcule $$\intx {(ax+b) \sen(cx+d)}.$$ 4) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x^4}{x^2-9}}.$$ 4) \T(Total: 1.0 pts) Calcule $$\intx {(\cos x)^3}.$$ 4) \T(Total: 2.0 pts) Calcule $$\intx {(\cos x)^4}.$$ % Dicas pro 4: você vai precisar de uma substituição trigonométrica e % outras substituições. % % a) \B(1.0 pts) Represente graficamente $r_0 = \setofst{P∈\R^2}{\Vec{AP}·\Vec{AB}=0}$. % % b) \B(1.0 pts) Represente graficamente $r_2 = \setofst{P∈\R^2}{\Vec{AP}·\Vec{AB}=2}$. \bsk \bsk \bsk Dicas: $\bsm{s=\senθ \\ \sqrt{1-s^2}=\cosθ \\ ds=\cosθ\,dθ \\ θ=\arcsen s}$, $\bsm{t=\tanθ \\ \sqrt{1+t^2}=\secθ=z \\ dt= z^2\,dθ \\ θ=\arctan t}$, $\bsm{z=\secθ \\ \sqrt{z^2-1}=\tanθ=t \\ dz= zt\,dθ \\ θ=\arcsec z}$, % Gabarito: % (find-es "ipython" "2017.1-C2-VS") \end{document} % Local Variables: % coding: utf-8-unix % End: