Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017-1-C2-P1.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017-1-C2-P1.tex" :end)) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017-1-C2-P1.pdf")) % (defun e () (interactive) (find-LATEX "2017-1-C2-P1.tex")) % (defun u () (interactive) (find-latex-upload-links "2017-1-C2-P1")) % (find-xpdfpage "~/LATEX/2017-1-C2-P1.pdf") % (find-sh0 "cp -v ~/LATEX/2017-1-C2-P1.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017-1-C2-P1.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017-1-C2-P1.pdf % file:///tmp/2017-1-C2-P1.pdf % file:///tmp/pen/2017-1-C2-P1.pdf % http://angg.twu.net/LATEX/2017-1-C2-P1.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end {\setlength{\parindent}{0em} \footnotesize \par Cálculo 2 \par PURO-UFF - 2017.1 \par P1 - 17/jul/2017 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar \bsk \bsk % (c2q) 1) \T(Total: 1.0 pts) Demonstre que $\ddx \arctan x = \frac {1} {x^2+1}$. Você vai precisar do truque pra derivar funções inversas --- se $f(g(x))=x$ então $\ddx(f(g(x))) = \ddx x = 1$ --- e de um outro truque extra... dica: na demonstração de que $\ddx \arcsen x = \frac {1} {\sqrt{1-x^2}}$ o truque extra é $\cos^2 x + \sen^2 x = 1$. \bsk 2) \T(Total: 1.0 pts) Sejam $f(x) = x^{-4}$ e $F(x) = \frac{x^{-3}}{-3}$. a) \B(0.1 pts) Mostre que a área $\Intx{-1}{1}{f(x)}$ é positiva. b) \B(0.2 pts) Calcule $\Difx{-1}{1}{F(x)}$. c) \B(0.3 pts) Calcule $G(ε) = \Intx{-1}{-ε}{f(x)} + \Intx{ε}{1}{f(x)}$. Obs: $ε>0$. d) \B(0.4 pts) Calcule $\lim_{ε→0^+} G(ε)$. \bsk 3) \T(Total: 2.0 pts) Calcule $$\Intx{-1}{2}{\frac{1}{3+|x|}}.$$ 4) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x^2}{x^2 + 4x - 5}}.$$ 5) \T(Total: 2.0 pts) Calcule $$\intx {\frac{x}{1+x^2}}.$$ % 6) \T(Total: 1.0 pts) Calcule $$\intx {(2x+3) \sen (4x+5)}.$$ 6) \T(Total: 2.0 pts) Calcule $$\intx {(\cos x)^4}.$$ \bsk \bsk Dicas: $\bsm{s=\senθ \\ \sqrt{1-s^2}=\cosθ \\ ds=\cosθ\,dθ \\ θ=\arcsen s}$, $\bsm{t=\tanθ \\ \sqrt{1+t^2}=\secθ=z \\ dt= z^2\,dθ \\ θ=\arctan t}$, $\bsm{z=\secθ \\ \sqrt{z^2-1}=\tanθ=t \\ dz= zt\,dθ \\ θ=\arcsec z}$, $E = e^{iθ} = \cosθ+i\senθ = c + is$, $c=(E+E^{-1})/2$, $s=(E-E^{-1})/2i$. \newpage {\bf Gabarito parcial:} % (find-es "ipython" "2017.1-C2-P1") 1) $\begin{array}[t]{l} \ddx \arctan(\tan x) = \ddx x = 1 \\ \ddx \arctan(\tan x) = \arctan'(\tan x) \tan' x \\ \arctan'(\tan x) = \frac 1 {\tan' x} \\ \ddth \tanθ = \ddth \frac sc = \frac{s'c-sc'}{c^2} = \frac{c^2+s^2}{c^2} = \frac{c^2}{c^2} + \frac{s^2}{c^2} = 1 + t^2 \\ \ddx \tan x = (\tan x)^2 + 1 \\ \arctan'(\tan x) = \frac 1 {(\tan x)^2 + 1} \\ \arctan'(t) = \frac 1 {t^2 + 1} \\ \arctan'(x) = \frac 1 {x^2 + 1} \\ \end{array} $ \bsk 2a) (um desenho) 2b) $\Difx{-1}{1}{F(x)} = F(1)-F(-1) = \frac{1^{-3}}{-3} - \frac{(-1)^{-3}}{-3} = \frac{1}{-3} - \frac{-1}{-3} = \frac{2}{-3} = - \frac{2}{3} $ 2c) $\begin{array}[t]{rcl} G(ε) &=& \Difx{-1}{-ε}{F(x)} + \Difx{ε}{1}{F(x)} \\ &=& F(-ε)-F(-1) + F(1)-F(ε) \\ &=& \frac{(-ε)^{-3}}{-3} - \frac{(-1)^{-3}}{-3} + \frac{1^{-3}}{-3} - \frac{ε^{-3}}{-3} \\ &=& \frac{(-ε)^{-3} + 1 + 1 - ε^{-3}}{-3} \\ &=& \frac{2 - 2(ε^{-3})}{-3} \\ &=& \frac{2(ε^{-3}) - 2}{3} \\ &=& \frac{2}{3}(ε^{-3} - 1) \\ \end{array} $ 2d) $\lim_{ε→0^+} G(ε) = \frac{2}{3}(\lim_{ε→0^+} ε^{-3} - \lim_{ε→0^+} 1) = \frac23(+∞-1) = +∞$ \bsk \def\mycases#1#2{\begin{cases} #1 & \text{quando $x<0$} \\ #2 & \text{quando $x≥0$} \\ \end{cases} } 3) Seja $f(x) = \frac{1}{3+|x|}$. Então $f$ é contínua e: % $$f(x) = \mycases{\frac{1}{3+|x|}}{\frac{1}{3+|x|}} = \mycases{\frac{1}{3-x}}{\frac{1}{3+x}} = \mycases{-\frac{1}{x-3}}{\frac{1}{x+3}} $$ $$\begin{array}{rcl} \Intx{-1}{2}{f(x)} &=& \Intx{-1}{0}{-\frac{1}{x-3}} + \Intx{0}{2}{\frac{1}{x+3}} \\ &=& \Difx{-1}{0}{(-\ln|x-3|)} + \Difx{0}{2}{\ln|x+3|} \\ &=& (-\ln|-1-3|) - (-\ln|0-3|) + (-\ln|2+3|) - (-\ln|0+3|) \\ &=& (-\ln 4) - (-\ln 3) + (- \ln 5) - (-\ln 3) \\ &=& 2\ln 3 - \ln 4 - \ln 5 \\ \end{array} $$ \msk 4) $\intx {\frac{x^2}{x^2 + 4x - 5}} = \intx {1 + \frac{1}{6}\frac{1}{x-1} - \frac{25}{6}\frac{1}{x+5} } = x + \frac{1}{6}\ln|x-1| - \frac{25}{6}\ln|x+5| $ \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: