Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2015-2-GA-material.tex") % (find-angg "LATEX/2015-2-GA-material.lua") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2015-2-GA-material.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2015-2-GA-material.pdf")) % (defun e () (interactive) (find-LATEX "2015-2-GA-material.tex")) % (defun l () (interactive) (find-LATEX "2015-2-GA-material.lua")) % (defun u () (interactive) (find-latex-upload-links "2015-2-GA-material")) % (find-xpdfpage "~/LATEX/2015-2-GA-material.pdf") % (find-lualatex-links "2015-2-GA-material") % (find-es "dednat" "GA-material-pack") % (find-LATEX "falta-misandria-a5.tex") % (find-LATEXfile "2014-1-GA-P2-gab.tex") % (find-LATEXfile "2015-1-GA-P2-gabarito.tex" "\\catcode") % (find-LATEXfile "2015-1-GA-P2-gabarito.tex" "dednat6dir =") % (find-sh0 "cp -v ~/LATEX/2015-2-GA-material.pdf /tmp/") % file:///home/edrx/LATEX/2015-2-GA-material.pdf % http://angg.twu.net/LATEX/2015-2-GA-material.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{tikz} % \usepackage{luacode} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input istanbuldefs % (find-LATEX "istanbuldefs.tex") % % \input istanbuldefs.tex % (find-istfile "defs.tex") \def\Diag#1{\directlua{tf:processuntil()}\diag{#1}} \def\Ded #1{\directlua{tf:processuntil()}\ded{#1}} \def\Exec#1{\directlua{tf:processuntil() #1}} \def\Expr#1{\directlua{tf:processuntil() output(#1)}} \def\Expr#1{\directlua{tf:processuntil() output(tostring(#1))}} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\e{\expr} % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\pu{\directlua{pu()}} {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2015.2 \par Material para exercícios - Eduardo Ochs % \par Versão: veja o pé de página % 21/dez/2015 \par Links importantes: \par \url{http://angg.twu.net/2015.2-GA.html} (página do curso) \par \url{http://angg.twu.net/LATEX/2015-2-GA-material.pdf} (lista, atualizada) \par \url{http://angg.twu.net/2015.2-GA/2015.2-GA.pdf} (quadros) \par \url{http://angg.twu.net/2015.1-GA/GA_Reis_Silva.pdf} (livro) \par \url{http://angg.twu.net/2015.1-GA/mariana_imbelloni_retas.pdf} \par {\tt eduardoochs@gmail.com} (meu e-mail) } \bsk \bsk % Dots, labels, vectors % \def\uu{\vec u} \def\vv{\vec v} \def\ww{\vec w} \def\VEC#1{{\overrightarrow{(#1)}}} \def\nm#1{\|#1\|} \def\Reg#1{(#1)} \def\setofxyst#1{\setofst{(x,y)∈\R^2}{#1}} \def\setofet #1{\setofst{#1}{t∈\R}} \def\setofeu #1{\setofst{#1}{u∈\R}} \def\setofpt #1 #2 #3 #4 {\setofet{(#1,#2)+t\VEC{#3,#4}}} \def\setofpu #1 #2 #3 #4 {\setofeu{(#1,#2)+u\VEC{#3,#4}}} % \mygrid and \myaxes % (find-es "tikz" "mygrid") \tikzset{mycurve/.style=very thick} \tikzset{axis/.style=semithick} \tikzset{tick/.style=semithick} \tikzset{grid/.style=gray!20,very thin} \tikzset{anydot/.style={circle,inner sep=0pt,minimum size=1.2mm}} \tikzset{opdot/.style={anydot, draw=black,fill=white}} \tikzset{cldot/.style={anydot, draw=black,fill=black}} % \def\mygrid(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); \draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-10,0) -- (10,0); \draw[axis] (0,-10) -- (0,10); \foreach \x in {-10,...,10} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-10,...,10} \draw[tick] (-0.2,\y) -- (0.2,\y); } \def\myaxes(#1,#2) (#3,#4){ \clip (#1-0.4, #2-0.4) rectangle (#3+0.4, #4+0.4); %\draw[step=1,grid] (#1-0.2, #2-0.2) grid (#3+0.2, #4+0.2); \draw[axis] (-20,0) -- (20,0); \draw[axis] (0,-20) -- (0,20); \foreach \x in {-20,...,20} \draw[tick] (\x,-0.2) -- (\x,0.2); \foreach \y in {-20,...,20} \draw[tick] (-0.2,\y) -- (0.2,\y); } % Grid color \tikzset{grid/.style=gray!50,very thin} \def\tikzp#1{\mat{\begin{tikzpicture}#1\end{tikzpicture}}} \def\mydraw #1;{\draw [mycurve] \expr{#1};} \def\mydot #1;{\node [cldot] at \expr{#1} [] {};} \def\myldot #1 #2 #3;{\node [cldot] at \expr{#1} [label=#2:${#3}$] {};} \def\myseg #1 #2;{\draw [mycurve] \expr{#1} -- \expr{#2};} \def\mylabel #1 #2 #3;{\node [] at \expr{#1} [label=#2:${#3}$] {};} \def\myseggrid #1 #2;{\draw [grid] \expr{#1} -- \expr{#2};} % (find-dn6 "picture.lua" "V") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end %L V.__div = function (v, k) return v*(1/k) end %L V.__index.tow = function (A, B, t) return A+(B-A)*t end -- towards %L V.__index.mid = function (A, B) return A+(B-A)*0.5 end -- midpoint %L A, O, B, C = v(0,5), v(0,0), v(2,1), v(2,0) %L print(A:mid(B), "hiiiiiiii") \pu $\tikzp{[scale=0.4,auto] % \myaxes (-1,-1) (13,9); \clip (-1,-1) rectangle (4,6); % \myseg A B; \draw [mycurve] \e{B} -- \e{C} -- \e{O} -- \e{A} -- \e{B} -- \e{O}; % \mylabel B+(C-B)/2 0 hello; \mylabel A:mid(O) 180 h; \mylabel A:mid(C) 0 hc; \mylabel O:mid(B) 90 hs; % \myvgrid % \mylabel p(0,0) 270 O; % \mylabel p(1,0) 0 \uu; % \mylabel p(0,1) 180 \vv; % % \myseg p(1,1) p(1,3); % \myseg p(1,3) p(3,3); % \myseg p(1,2) p(2,2); % \myldot p(1,3) 180 B; \myldot p(3,3) 0 C; % \myldot p(1,2) 180 D; \myldot p(2,2) 0 E; % \myldot p(1,1) 180 A; } $ \end{document} \newpage {\setlength{\parindent}{0em} Exercícios de V/F/justifique da primeira lista do Reginaldo, reescritos: \Reg{2a} Se $α\uu+β\vv=\vec0$ então $α=0$ e $β=0$. \Reg{2b} Seja $ABCD$ um quadrilátero... \Reg{2c} $||\,||\uu||\,\vv|| = ||\,||\vv||\,\uu||$ \Reg{2d} Se $||\uu|| = ||\vv||$ então $(\uu-\vv)·(\uu+\vv)=0$. \Reg{2e} $\uu·\vv=||\uu||\,||\vv||$ \Reg{2f} Se $\uu≠\vec0$ e $\uu·\vv=\uu·\ww$ então $\vv=\ww$. \Reg{2g} $||\uu+\vv||^2 = ||\uu||^2 + 2\uu·\vv + ||\vv||^2$. \Reg{2h} $||\uu+\vv||^2 + ||\uu+\vv||^2 = 2(||\uu||^2 + ||\vv||^2)$. \Reg{2i} $||\uu+\vv||^2 + ||\uu-\vv||^2 = 4\uu·\vv$. \Reg{2j} Existe uma reta que contém os pontos $A=(1,3)$, $B=(-1,2)$ e $C=(5,4)$. \Reg{2k} O triângulo com vértices $A=(1,0)$, $B=(0,2)$ e $C=(-2,1)$ é retângulo. \Reg{2l} Todo vetor em $\R^2$ é combinação linear de $\uu=\VEC{2,3}$, $\vv=\VEC{1,\frac32}$. \Reg{2m} Se $\uu≠\vec0$, $\vv≠\vec0$ e $\Pr_{\vv}\uu = \vec0$ então $\uu⊥\vv$. } \newpage % (find-fline "~/2015.2-GA/") % (find-djvupage "~/2015.2-GA/2015.2-GA.djvu") {\bf 2)} (Fizemos este em sala em 16/dez/2015) Represente graficamente as retas abaixo. Nas parametrizadas indique no gráfico os pontos associados a $t=0$ e $t=1$. $r_a = \setofxyst{ x+2y=0 }$ $r_b = \setofxyst{ x+2y=4 }$ $r_c = \setofxyst{ x+2y=2 }$ $r_d = \setofxyst{ 2x+3y=0 }$ $r_e = \setofxyst{ 2x+3y=6 }$ $r_f = \setofxyst{ 2x+3y=3 }$ $r_g = \setofpt 3 -1 -1 1 $ $r_h = \setofpt 3 -1 -2 1 $ $r_i = \setofpt 3 -1 1 -1 $ $r_j = \setofpt 0 3 2 0 $ $r_k = \setofpt 2 0 0 1 $ $r_l = \setofxyst{ y=4 }$ $r_m = \setofxyst{ y=4+x }$ $r_n = \setofxyst{ y=4-2x }$ \bsk \bsk %L r0, rv = v(2,3), v(1,1) %L s0, sw = v(2,3), v(2,-1) %L rt = function (t) return r0 + t*rv end %L su = function (u) return s0 + u*sw end \pu \def\rt#1{\expr{rt(#1):xy()}} \def\su#1{\expr{su(#1):xy()}} % \rt 0 \rt 1 \rt 2 % \su 0 \su 1 \su 2 {\bf 3)} Em cada um dos casos abaixo, represente $r$ e $s$ graficamente, marcando os pontos associados a $t=0$, $t=1$, $u=0$, $u=1$; encontre no olhômetro o ponto $P \in r \cap s$; encontre (também no olhômetro) os valores de $t$ e $u$ associados a $P$; e verifique que você encontrou o $t$ e o $u$ certos, fazendo como abaixo. \msk %L inter = v(1,4) %L r0, rv = v(3,3), v(2,-1) %L s0, sw = v(4,1), v(-1,1) \pu % (find-pgfmanualpage 44 "3.9 Adding Labels Next to Nodes") % (find-pgfmanualtext 44 "3.9 Adding Labels Next to Nodes") $\tikzp{[scale=0.5,auto] \mygrid (-1,-1) (7,5); \draw[mycurve] \rt{-2} -- \rt{5}; \draw[mycurve] \su{-2} -- \su{5}; \node [cldot] at \rt{0} [label=60:${t{=}0}$] {}; \node [cldot] at \rt{1} [label=60:${t{=}1}$] {}; \node [cldot] at \su{0} [label=200:${u{=}0}$] {}; \node [cldot] at \su{1} [label=200:${u{=}1}$] {}; \node [cldot] at \su{3} [label=60:$P$] {}; } $ $r = \setofpt 3 3 2 -1 $ $s = \setofpu 4 1 -1 1 $ $(1,4) = (3,3)+(-1)\VEC{2,-1} ∈ r$ $(1,4) = (4,1)+3\VEC{-1,1} ∈ s$ $(1,4) ∈ r∩s$ \msk a) $r = \setofpt 1 0 0 3 $, $s = \setofpu 0 4 2 0 $ b) $r = \setofpt 1 0 3 1 $, $s = \setofpu 0 2 2 3 $ c) $r = \setofet{ (1+3t,t) }$, $s = \setofeu{ (2u,2+3u) } $ d) $r = \setofpt 0 3 2 -1 $, $s = \setofpu 1 0 1 3 $ (No d o olhômetro não basta, você vai precisar resolver um sistema) \newpage % ___ % / _ \ _ _ __ __ % | | | | | | | | \ \ / / % | |_| | | |_| |_ \ V / % \___( ) \__,_( ) \_/ % |/ |/ {\setlength{\parindent}{0em} Exercício: Em cada um das figuras abaixo vamos definir o sistema de coordenadas $Σ$ por $Σ=(O,\uu,\vv)$ e $(a,b)_Σ = O+a\uu+b\vv$. Sejam: $B = (1,3)_Σ$, $C = (3,3)_Σ$, $D = (1,2)_Σ$, $E = (2,2)_Σ$, $A = (1,1)_Σ$. Desenhe a figura formada pelos pontos $A$, $B$, $C$, $D$ e $E$ e pelos segmentos de reta $\overline{AB}$, $\overline{BC}$ e $\overline{DE}$. (O item (a) já está feito.) } % myvgrid % \def\myvgrid{ \myseggrid p(0,0) p(0,4); \myseggrid p(1,0) p(1,4); \myseggrid p(2,0) p(2,4); \myseggrid p(3,0) p(3,4); \myseggrid p(4,0) p(4,4); \myseggrid p(0,0) p(4,0); \myseggrid p(0,1) p(4,1); \myseggrid p(0,2) p(4,2); \myseggrid p(0,3) p(4,3); \myseggrid p(0,4) p(4,4); \draw [->] \expr{p(0,0)} -- \expr{p(0,1)}; \draw [->] \expr{p(0,0)} -- \expr{p(1,0)}; } \def\mytriangle{ \myseg p(1,2) p(1,3); \myseg p(1,3) p(3,3); \myseg p(3,3) p(1,2); \mydot p(1,2); \mydot p(1,3); \mydot p(3,3); } %L p = function (a, b) return O + a*uu + b*vv end a) %L O, uu, vv = v(3, 1), v(2, 1), v(-1, 1) \pu $\tikzp{[scale=0.4,auto] \myaxes (-1,-1) (13,9); \myvgrid \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 180 \vv; % \myseg p(1,1) p(1,3); \myseg p(1,3) p(3,3); \myseg p(1,2) p(2,2); \myldot p(1,3) 180 B; \myldot p(3,3) 0 C; \myldot p(1,2) 180 D; \myldot p(2,2) 0 E; \myldot p(1,1) 180 A; } $ % \quad % b) %L O, uu, vv = v(2, 2), v(1, 0), v(0, 1) \pu $\tikzp{[scale=0.4,auto] \myvgrid; \myaxes (-1,-1) (6,6); \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 90 \vv; } $ c) %L O, uu, vv = v(-5, 1), v(2, 0), v(0, 1) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-6,-1) (4,6); \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 90 \vv; } $ % \quad % d) %L O, uu, vv = v(1, 1), v(1, 0), v(0, 2) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-1,-1) (6,10); \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 90 \vv; } $ % \quad % e) %L O, uu, vv = v(2, 2), v(0, 1), v(1, 0) $\tikzp{[scale=0.4,auto] \pu \myvgrid; \myaxes (-1,-1) (6,6); \mylabel p(0,0) 270 O; \mylabel p(1,0) 90 \uu; \mylabel p(0,1) 0 \vv; } $ f) %L O, uu, vv = v(4, 4), v(-2, 1), v(-1, -2) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-8,-5) (6,8); \mylabel p(0,0) 0 O; \mylabel p(1,0) 180 \uu; \mylabel p(0,1) 0 \vv; } $ % \quad % g) %L O, uu, vv = v(-3, 1), v(1, 0), v(1, 1) $\tikzp{[scale=0.4,auto] \pu \myvgrid; \myaxes (-3,-1) (6,6); \mylabel p(0,0) 270 O; \mylabel p(1,0) 0 \uu; \mylabel p(0,1) 90 \vv; } $ \newpage % ___ _ _ _ % / _ \ _ _ __ ___ | |_ _ __(_) __ _ _ __ __ _| | ___ ___ % | | | | | | | | \ \ / (_) | __| '__| |/ _` | '_ \ / _` | |/ _ \/ __| % | |_| | | |_| |_ \ V / _ | |_| | | | (_| | | | | (_| | | __/\__ \ % \___( ) \__,_( ) \_/ (_) \__|_| |_|\__,_|_| |_|\__, |_|\___||___/ % |/ |/ |___/ {\setlength{\parindent}{0em} Agora vamos usar uma notação um pouco mais pesada... $Σ_i=(O_i,\uu_i,\vv_i)$, $Σ_0=((0,0),\VEC{1,0},\VEC{0,1})$, $(a,b)_{Σ_i} = O_i+a\uu_i+b\vv_i$, $B_i = (1,3)_{Σ_i}$, $C_i = (3,3)_{Σ_i}$, $D_i = (1,2)_{Σ_i}$, $E_i = (2,2)_{Σ_i}$, $A_i = (1,1)_{Σ_i}$. As figuras abaixo representam os triângulos $D_iB_iC_i$ para $i=1,\ldots,7$. \medskip Já vimos que na passagem de um diagrama para outro as figuras - `F's e triângulos - podem ser transladadas, ampliadas, reduzidas, amassadas, deformadas, espelhadas... Quais das transformações preservam distâncias ($d(P_i,Q_i) = d(P_j,Q_j)$)? Quais das transformações preservam ângulos ($P_i\hat{Q_i}R_i = P_j\hat{Q_j}R_j$)? } a) %L O, uu, vv = v(3, 1), v(2, 1), v(-1, 1) \pu $\tikzp{[scale=0.4,auto] \myaxes (-1,-1) (13,9); \myvgrid \mylabel p(0,0) 270 O_1; \mylabel p(1,0) 0 \uu_1; \mylabel p(0,1) 180 \vv_1; % \mytriangle; % \myseg p(1,1) p(1,3); % \myseg p(1,3) p(3,3); % \myseg p(1,2) p(2,2); % \myldot p(1,3) 180 B; \myldot p(3,3) 0 C; % \myldot p(1,2) 180 D; \myldot p(2,2) 0 E; % \myldot p(1,1) 180 A; } $ % \quad % b) %L O, uu, vv = v(2, 2), v(1, 0), v(0, 1) \pu $\tikzp{[scale=0.4,auto] \myvgrid; \myaxes (-1,-1) (6,6); \mylabel p(0,0) 270 O_2; \mylabel p(1,0) 0 \uu_2; \mylabel p(0,1) 90 \vv_2; \mytriangle; } $ c) %L O, uu, vv = v(-5, 1), v(2, 0), v(0, 1) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-6,-1) (4,6); \mylabel p(0,0) 270 O_3; \mylabel p(1,0) 0 \uu_3; \mylabel p(0,1) 90 \vv_3; \mytriangle; } $ % \quad % d) %L O, uu, vv = v(1, 1), v(1, 0), v(0, 2) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-1,-1) (6,10); \mylabel p(0,0) 270 O_4; \mylabel p(1,0) 0 \uu_4; \mylabel p(0,1) 90 \vv_4; \mytriangle; } $ % \quad % e) %L O, uu, vv = v(2, 2), v(0, 1), v(1, 0) $\tikzp{[scale=0.4,auto] \pu \myvgrid; \myaxes (-1,-1) (6,6); \mylabel p(0,0) 270 O_5; \mylabel p(1,0) 90 \uu_5; \mylabel p(0,1) 0 \vv_5; \mytriangle; } $ f) %L O, uu, vv = v(4, 4), v(-2, 1), v(-1, -2) $\tikzp{[scale=0.3,auto] \pu \myvgrid; \myaxes (-8,-5) (6,8); \mylabel p(0,0) 0 O_6; \mylabel p(1,0) 180 \uu_6; \mylabel p(0,1) 0 \vv_6; \mytriangle; } $ % \quad % g) %L O, uu, vv = v(-3, 1), v(1, 0), v(1, 1) $\tikzp{[scale=0.4,auto] \pu \myvgrid; \myaxes (-4,-1) (6,6); \mylabel p(0,0) 270 O_7; \mylabel p(1,0) 0 \uu_7; \mylabel p(0,1) 90 \vv_7; \mytriangle; } $ \end{document} http://angg.twu.net/GA/lista1_GA_2011.1.pdf % Local Variables: % coding: utf-8-unix % modes: (fundamental-mode emacs-lisp-mode lua-mode) % End: