Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2009-1-C2-prova-1-gab.tex") % (find-angg "LATEX/2009-1-C2-prova-1.tex") % (find-dn4ex "edrx08.sty") % (find-angg ".emacs.templates" "s2008a") % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-1-C2-prova-1-gab.tex && latex 2009-1-C2-prova-1-gab.tex")) % (defun c () (interactive) (find-zsh "cd ~/LATEX/ && ~/dednat4/dednat41 2009-1-C2-prova-1-gab.tex && pdflatex 2009-1-C2-prova-1-gab.tex")) % (eev "cd ~/LATEX/ && Scp 2009-1-C2-prova-1-gab.{dvi,pdf} edrx@angg.twu.net:slow_html/LATEX/") % (find-dvipage "~/LATEX/2009-1-C2-prova-1-gab.dvi") % (find-pspage "~/LATEX/2009-1-C2-prova-1-gab.pdf") % (find-pspage "~/LATEX/2009-1-C2-prova-1-gab.ps") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o 2009-1-C2-prova-1-gab.ps 2009-1-C2-prova-1-gab.dvi") % (find-zsh0 "cd ~/LATEX/ && dvips -D 600 -P pk -o 2009-1-C2-prova-1-gab.ps 2009-1-C2-prova-1-gab.dvi && ps2pdf 2009-1-C2-prova-1-gab.ps 2009-1-C2-prova-1-gab.pdf") % (find-zsh0 "cd ~/LATEX/ && dvips -D 300 -o tmp.ps tmp.dvi") % (find-pspage "~/LATEX/tmp.ps") % (ee-cp "~/LATEX/2009-1-C2-prova-1-gab.pdf" (ee-twupfile "LATEX/2009-1-C2-prova-1-gab.pdf") 'over) % (ee-cp "~/LATEX/2009-1-C2-prova-1-gab.pdf" (ee-twusfile "LATEX/2009-1-C2-prova-1-gab.pdf") 'over) \documentclass[oneside]{book} \usepackage[latin1]{inputenc} \usepackage{edrx08} % (find-dn4ex "edrx08.sty") %L process "edrx08.sty" -- (find-dn4ex "edrx08.sty") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \begin{document} \input 2009-1-C2-prova-1-gab.dnt %* % (eedn4-51-bounded) \def\ddx{\frac{d}{dx}} \def\ddth{\frac{d}{d\theta}} \def\sen{\operatorname{sen}} \def\sec{\operatorname{sec}} \def\ln{\operatorname{ln}} % To update the list of slides uncomment this line: %\makelos{tmp.los} % then rerun LaTeX on this file, and insert the contents of "tmp.los" % below, by hand (i.e., with "insert-file"): % (find-fline "tmp.los") % (insert-file "tmp.los") {\setlength{\parindent}{0pt} Cálculo Diferencial e Integral II PURO-UFF - 2009.1 Turma: A1/RCT00017 Professor: Eduardo Ochs {Gabarito (parcial?) da primeira prova} Versão: 2009jun05 } \bsk \bsk \def\Area{\text{Área}} 1a) (1.5 pontos): $$\begin{array}{rcl} \Area(A) &=& Å_{-4}^{-2} f(x)dx \\ \Area(B) &=& Å_{-3}^{-0} g(x)dx - Å_{-3}^{-2} f(x)dx - Å_{-2}^{0} h(x)dx \\ \Area(C) &=& Å_{-2}^{-0} h(x)dx + Å_{0}^{2} k(x)dx \\ \Area(D) &=& Å_{0}^{4} p(x)dx - Å_{0}^{4} k(x)dx \\ \end{array} $$ 1b) (1.0 pontos): $$\begin{array}{rclcrcl} f(x) &=& 1-(x+3)^2 && Åf(x)dx &=& x - \frac13 (x+3)^3 \\ g(x) &=& 2 \sqrt{x+4}-1 && Åg(x)dx &=& \frac43 (x+4)^{3/2} - x \\ h(x) &=& ((x+4)/2)^2-1 && Åh(x)dx &=& \frac1{12} (x+4)^3 - x \\ k(x) &=& ((4-x)/2)^2-1 && Åk(x)dx &=& -\frac1{12} (4-x)^3 - x \\ p(x) &=& 2 \sqrt{4-x}-1 && Åp(x)dx &=& - \frac43 (4-x)^{3/2} - x \\ \end{array} $$ % F = function (x) return x - 1/3 * (x+3)^3 end % G = function (x) return 4/3 * (x+4)^(3/2) - x end % H = function (x) return 1/12 * (x+4)^3 - x end % K = function (x) return - 1/12 * (4-x)^3 - x end % P = function (x) return - 4/3 * (4-x)^(3/2) - x end $\Area(B) = 3$ $\Area(D) = 16/3$ % (find-angg "LATEX/2009-1-C2-prova-1.tex") % (find-dvipage "~/LATEX/2009-1-C2-prova-1.dvi") \bsk\bsk 2a) (0.5 pontos) % $$\begin{array}{rcl} Åx^2 \ln x\,dx &=& (\frac13 x^3)(\ln x) - Å(\frac13 x^3)\frac1x \, dx \\ &=& (\frac13 x^3)(\ln x) - \frac13 Å x^2 \, dx \\ &=& (\frac13 x^3)(\ln x) - \frac19 x^3 \, dx \\ \end{array} $$ 2b) (1.0 pontos) Eu fiz uma conta errada quando bolei esta questão... Temos primitivas para $Å(\sen x)x^n\,dx$ e para $Åx^n \ln x\,dx$, mas não para $Å(\sen x)\ln x\,dx$ --- quando tentamos calcular $Å(\sen x)\ln x\,dx$ por integração por partes caímos em $Å \frac{\sen x}{x}\,dx$, que não tem uma primitiva que possa ser expressa por funções elementares... Veja \url{http://en.wikipedia.org/wiki/Differential_Galois_theory} para detalhes. {\sl Vou dobrar o valor desta questão, e dar até 2.0 pontos pra quem tiver feito várias boas tentativas incompletas.} \newpage 3a) (0.5 pontos) % $$\begin{array}{rcl} Å\frac{1}{(x-2)(x-3)} dx &=& Å\frac{a}{x-2} + \frac{b}{x-3} \,dx \\ &=& Å\frac{a(x-3)+b(x-2)}{(x-2)(x-3)} \,dx \\ &=& Å\frac{-(x-3)+(x-2)}{(x-2)(x-3)} \,dx \\ &=& Å\frac{-1}{x-2} + \frac{1}{x-3} \,dx \\ &=& -\ln|x-2| + \ln|x-3| \\ \end{array} $$ 3b) (0.5 pontos) % $$\begin{array}{rcl} Å\frac{x+1}{(x-1)^2} dx &=& Å\frac{a}{(x-1)} + \frac{b}{(x-1)^2} \,dx \\ &=& Å\frac{a(x-1)+b}{(x-1)^2} \,dx \\ &=& Å\frac{(x-1)+2}{(x-1)^2} \,dx \\ &=& Å\frac{1}{(x-1)} + \frac{2}{(x-1)^2} \,dx \\ &=& \ln|x-1| - \frac{2}{x-1} \\ \end{array} $$ \bsk \bsk 4a) (0.8 pontos) Se $u=x-10$ então $x = u+10$ e $x^2 - 20x + 1000 = (u+10)^2 - 20(u+10) + 1000 = (u^2 + 20u + 100) - (20u + 200) + 1000 = u^2 + 900$. % $$\begin{array}{rcl} Å_{x=2}^{x=3} \frac{x}{\sqrt{x^2 - 20x + 1000}} \, dx &=& Å_{u=2-10}^{u=3-10} \frac{u+10}{\sqrt{u^2 + 900}} \, du \end{array} $$ 4b) (0.2 pontos) % $$\begin{array}{rcl} Å \frac{x^2+1}{x\sqrt{4-x^2}}\,dx &=& Å \frac{x^2+1}{x\sqrt{4(1-\frac14 x^2)}}\,dx \\ &=& Å \frac{x^2+1}{2x\sqrt{(1-\frac14 x^2)}}\,dx \\ \end{array} $$ % $$\begin{array}{rcl} % Å \frac{x^2+1}{x\sqrt{4-x^2}}\,dx % &=& Å \frac{x^2+1}{x\sqrt{4(1-\frac14 x^2)}}\,dx \\ % &=& Å \frac{x^2+1}{x\sqrt{4(1-(\frac12 x)^2)}}\,dx \\ % &=& Å \frac{4(\frac12 x)^2+1}{2(\frac12 x)2\sqrt{1-(\frac12 x)^2}}\,dx \\ % &=& Å \frac{(\frac12 x)^2+1}{(\frac12 x)\sqrt{1-(\frac12 x)^2}}\,dx \\ % &=& Å \frac{u^2+1}{u\sqrt{1-u^2}}\,2\,du \\ % \end{array} % $$ 4c) (0.5 pontos) Se $u=3x$ então $x=\frac13 u$ e $dx = \frac13\,du$. Aí: % $$\begin{array}{rcl} Å_{x=1/9}^{x=1/6} \frac{\sqrt{1-9x^2}}{3-x}\,dx &=& Å_{u=1/3}^{u=1/3} \frac{\sqrt{1-u^2}}{3-\frac13 u}\,\frac13 du \\ \end{array} $$ 4d) (1.0 pontos) % $$\begin{array}{rcl} Å \frac{t^2}{(\sqrt{1+t^2})^5}\,dt &=& Å\frac{t^2}{z^5}z^2\,d \\ &=& Å\frac{t^2}{z^3}\,d \\ &=& Å t^2 z^{-3}\,d \\ &=& Å \frac{s^2}{c^2} c^3\,d \\ &=& Å s^2 c\,d \\ &=& Å s^2 \,ds \\ &=& \frac13 s^3 \\ \end{array} $$ \newpage 4e) (1.0 pontos) % $$\begin{array}{rcl} Å_{t=a}^{t=b} \frac{t^2}{(\sqrt{1+t^2})^5}\,dt &=& Å_{=\arctan a}^{=\arctan b} \frac{t^2}{z^5}z^2\,d \\ &=& Å_{=\arctan a}^{=\arctan b} s^2 c\,d \\ &=& Å_{s=\sen \arctan a}^{s=\sen \arctan b} s^2 \,ds \\ &=& \frac13 s^3 \big|_{s=\sen \arctan a}^{s=\sen \arctan b} \\ &=& \frac13 (\sen \arctan t)^3 \big|_{t=a}^{t= b} \\ \end{array} $$ \bsk \bsk 5a) (0.4 pontos) Altura: $2f(x_0) = 2 \sqrt{1-(x_0-3)^2}$ Largura: $\ee$ Raio (interno) da casca cilíndrica: $x_0$ \msk 5b) (0.4 pontos) $A_i = (x_{i+1}-x_i)·2f(x_i) = 2f(x_i)(x_{i+1}-x_i)$ $V_i = \pi (2(x_{i+1}-x_i)x_i)·2f(x_i) = 4\pi x_i f(x_i) (x_{i+1}-x_i)$ \msk 5c) (0.6 pontos) Aproximações por somatórios: Área total: $\sum_{i=0,\ldots,n-1} A_i = \sum_{i=0,\ldots,n-1} 2f(x_i)(x_{i+1}-x_i)$ Volume total: $\sum_{i=0,\ldots,n-1} V_i = \sum_{i=0,\ldots,n-1} 4\pi x_i f(x_i) (x_{i+1}-x_i)$ \msk 5d) (0.6 pontos) Área total: % $$\begin{array}{rcl} \sum_{i=0,\ldots,n-1} 2f(x_i)(x_{i+1}-x_i) &\approx& Å_{x=x_0}^{x=x_n} 2f(x)\,dx \\ &=& Å_{x=2}^{x=4} 4\sqrt{1-(x-3)^2} \,dx \\ \end{array} $$ Volume total: % $$\begin{array}{rcl} \sum_{i=0,\ldots,n-1} 4\pi x_i f(x_i) (x_{i+1}-x_i) &\approx& Å_{x=x_0}^{x=x_n} 4\pi x f(x) \,dx \\ &=& Å_{x=2}^{x=4} 4\pi \sqrt{1-(x-3)^2} \,dx \\ \end{array} $$ %* \end{document} * (eepitch-lua51) * (eepitch-kill) * (eepitch-lua51) sqrt = math.sqrt -- Funções do problema 1: f = function (x) return 1-(x+3)^2 end g = function (x) return 2*sqrt(x+4)-1 end h = function (x) return ((x+4)/2)^2-1 end k = function (x) return ((4-x)/2)^2-1 end p = function (x) return 2*sqrt(4-x)-1 end print(f(-4), f(-3), f(-2)) print(g(-4), g(-3), g(0)) print(h(-4), h(-2), h(0)) print(k(0), k(2), k(4)) print(p(0), p(3), p(4)) -- Primitivas: F = function (x) return x - 1/3 * (x+3)^3 end G = function (x) return 4/3 * (x+4)^(3/2) - x end H = function (x) return 1/12 * (x+4)^3 - x end K = function (x) return - 1/12 * (4-x)^3 - x end P = function (x) return - 4/3 * (4-x)^(3/2) - x end pri = function (str, ...) local spl = split(str) print(str .. ": ", _G[spl[1]](spl[3]) - _G[spl[1]](spl[2]), ...) end pri("F -4 -3", 2/3) pri("F -3 -2", 2/3) pri("G -4 -3", 4/3 - 1) pri("G -3 -0", 9 - 8/3) pri("H -4 -2", 2/3 - 2) pri("H -2 -0", 8/3) pri("K 0 2", 8/3) pri("K 2 4", 2/3 - 2) pri("P 0 3", 9 - 8/3) pri("P 3 4", 4/3 - 1) % Local Variables: % coding: raw-text-unix % ee-anchor-format: "«%s»" % End: