Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
-- The latest upstream version of this can be found at: -- http://angg.twu.net/dednat5/gab-tests.lua -- http://angg.twu.net/dednat5/gab-tests.lua.html -- (find-dn5 "gab-tests.lua") -- -- This file tests the functions defined in: -- http://angg.twu.net/dednat5/gab.lua -- http://angg.twu.net/dednat5/gab.lua.html -- (find-dn5 "gab.lua") -- -- Author: Eduardo Ochs <eduardoochs@gmail.com> -- Version: 2012apr25 -- License: GPL3 -- «.intro» (to "intro") -- «.infix-algorithm» (to "infix-algorithm") -- «.infix-1» (to "infix-1") -- «.rect-0» (to "rect-0") -- «.rect-1» (to "rect-1") -- «.prints» (to "prints") -- «.internal-vs-infix» (to "internal-vs-infix") -- «.eval-basic» (to "eval-basic") -- «.eval-basic-2» (to "eval-basic-2") -- «.infix-pyramids» (to "infix-pyramids") -- «.context-0» (to "context-0") -- «.context-1» (to "context-1") -- «.app-lambda-1» (to "app-lambda-1") -- «.app-lambda-def-1» (to "app-lambda-def-1") -- «.comprehension-1» (to "comprehension-1") -- «.grids-1» (to "grids-1") -- «.parse-1» (to "parse-1") -- «.parse-2» (to "parse-2") -- «.parse-3» (to "parse-3") -- «.modal» (to "modal") -- «.parse-lpeg» (to "parse-lpeg") -- «intro» (to ".intro") -- Consider a quantified expression, like this one (and note that to -- keep everything in ascii we write "Fa" for "for all" and "Ex" for -- "exists"): -- -- Fa x in {2, 3, 4}. Ex y in {3, 4, 5}. 2*x <= y+3 -- -- using the constructors defined in this library we can create a -- tree-ish repreresentation of that expression in memory with: -- -- x = Var "x" -- y = Var "y" -- _2, _3, _4, _5 = Num(2), Num(3), Num(4), Num(5) -- comparison = Le(_2*x, y+_3) -- ex_expression = Ex(y, Set(_3, _4, _5), comparison) -- fa_expression = Fa(x, Set(_2, _3, _4), ex_expression) -- -- All the subexpressions of "fa_expression", i.e., the ones marked -- below (even numbers!), -- -- Fa x in {2, 3, 4}. Ex y in {3, 4, 5}. 2*x <= y+3 -- - - - - - - - - - - - - -- \-------/ \-------/ \-/ \-/ -- \--------/ -- \---------------------------/ -- \----------------------------------------------/ -- -- are represented internally as objects of the class "Expr", and so -- they know how to respond to all the methods for Expr objects - most -- importantly, they have a special "__tostring" that prints them in -- infix notation using only the parentheses that are essential, and -- they have an "eval". Here is a quick test: --[[ -- «infix-algorithm» (to ".infix-algorithm") -- -- The algorith for displaying infix expressions -- ============================================= -- The code for displaying expressions in infix notation was inspired -- by something that I learned in the code for Andrej Bauer's PLZoo: -- -- (find-es "ml" "plzoo") -- (find-es "ml" "levy") -- (find-levyfile "syntax.ml" "string_of_expr") -- http://andrej.com/plzoo/ -- http://andrej.com/plzoo/html/miniml.html -- ^ look for "string_of_expr" -- -- The basic idea is that each fully parenthesised expression like -- -- 22 + (33 * ((44 - 55) - (66 - 77))) -- -- has a unique representation with minimal parenthesisation, which in -- the case of the expression above is: -- -- 22 + 33 * (44 - 55 - (66 - 77)) -- -- to discover where those essential parentheses are, let's mark them -- in the edges of the representation of the expression as a tree: -- -- + -- / \ -- 22 * -- / \() -- 33 - -- / \() -- - - -- / \ / \ -- 44 55 66 77 -- -- If we write certain numbers at the top and the bottom of each -- connective, the rule becomes evident. Each edge connects a bottom -- number (above) to a top number (below). When b >= t, use -- parentheses. -- ___ -- / 7 \ -- / + \ -- |_6___7_| -- / \ -- 22 ___ -- / 8 \ -- / * \ -- |_7___8_| -- / \() -- 33 ___ -- / 7 \ -- / - \ -- |_6___7_| -- / \() -- ___ ___ -- / 7 \ / 7 \ -- / - \ / - \ -- |_6___7_| |_6___7_| -- / \ / \ -- 44 55 66 77 --]] -- (find-angg ".emacs" "to-shadow") -- (find-eapropos "shadow") --[[ -- «infix-1» (to ".infix-1") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] x = Var "x" y = Var "y" _2, _3, _4, _5 = Num(2), Num(3), Num(4), Num(5) comparison = Le(_2*x, y+_3) ex_expression = Ex(y, Set(_3, _4, _5), comparison) fa_expression = Fa(x, Set(_2, _3, _4), ex_expression) ex_expression:print() --> Ex y in {3, 4, 5}. 2*x <= y+3 fa_expression:print() --> Fa x in {2, 3, 4}. Ex y in {3, 4, 5}. 2*x <= y+3 fa_expression:eval():print() --> T x:Whens(Set(_2, _3, _4), ex_expression) --[[ -- «rect-0» (to ".rect-0") -- Low-level tests for Rect * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] r = Rect {w=3, "a", "ab", "abc"} = r = r..r = r.."foo" = "--"..r = rectconcat("+", {2, 3}) = rectconcat("+", {2, 34, 5}) = r:under_("Fa")..r:under(".") = r:under_("Fa") = r:under(".") -- High-level tests for Rect -- «rect-1» (to ".rect-1") --[[ * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] = (_2 * _3 + _4 * - _5):torect() comparison = Le(_2*x, y+_3) ex_expression = Ex(y, Set(_3, _4, _5), comparison) fa_expression = Fa(x, Set(_2, _3, _4), ex_expression) = fa_expression = tolisp(fa_expression) PP(fa_expression) = fa_expression:torect() = fa_expression e = fa_expression = "eval( "..e:torect().." ) --> "..e:eval():torect() -- Output: -- eval( Fa_.________. ) --> T -- | | | -- x {}_.__. Ex_.________. -- | | | | | | -- 2 3 4 y {}_.__. <=____. -- | | | | | -- 3 4 5 *__. +__. -- | | | | -- 2 x y 3 --[[ -- «prints» (to ".prints") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] -- Some ways of printing an expression and its result A = Set(_2, _3, _5) B = Set(_2, _3) expr = Le(a*a, Num(10)) a:Whens(A, expr) a:Whens(B, expr) Fa(a, A, expr):peval() Fa(a, B, expr):peval() = _2 * _3 + _4 * _5 (_2 * _3 + _4 * _5):peval() = (_2 * _3):Dbg() + (_4 * _5):Dbg() ((_2 * _3):Dbg() + (_4 * _5):Dbg()):peval() --[[ -- «internal-vs-infix» (to ".internal-vs-infix") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] -- The internal representation vs. the infix representation PP(2) PP(_2, otype(_2)) = _2 + _3 PP(_2 + _3) (_2 + _3):lprint() --[[ -- «eval-basic» (to ".eval-basic") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] -- Basic evaluation = _2 + _3 = (_2 + _3):eval() = (_2 + - _3):eval() PP((_2 + - _3):eval()) = Le(_2, _3) = Le(_2, _3):eval() = Ge(_2, _3):eval() --[[ -- «eval-basic-2» (to ".eval-basic-2") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] = Ge(a+(b*(c-d)), a) = Ge(a, a+(b*(c-d))) PP(Ge(a, a+(b*(c-d)))) (Ge(a, a+(b*(c-d)))):lprint() = Set(a*a, b, c, Tuple(a, b)) (Set(a*a, b, c, Tuple(a, b))):lprint() = Fa(a, Set(b, c), Le(a, d)) (Fa(a, Set(b, c), Le(a, d))):lprint() e = Le(_2*a, b+_3) ee = Ex(b, Set(_3, _4, _5), e) eee = Fa(a, Set(_2, _3, _4), ee) = And(ee, ee) = And(e, eee) = _2:eval() = _2 + _3 = (_2 + _3):eval() = (_2 * - _3):eval() PP(_2) PP(- _3) PP( _3 :neval()) PP((- _3):neval()) --[[ -- «infix-pyramids» (to ".infix-pyramids") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] -- Tests for the parenthesisation algorithm (using "pyramids") = And(And(a, b), And(c, d)) = Or (Or (a, b), Or (c, d)) = Imp(Imp(a, b), Imp(c, d)) pyr = function (F) print(F(F(a, b), F(c, d))) end pyr2 = function (F, G) print(F(G(a, b), G(c, d)), G(F(a, b), F(c, d))) end pyrs = function (T) for i=1,#T-1 do pyr(T[i]); pyr2(T[i], T[i+1]) end pyr(T[#T]) end pyr(And) pyr(Or) pyr(Imp) pyr2(And, Or) pyr2(And, Not) pyrs { Unm, Mul, Div, Add, Sub, Eq, Lt, Le, Ge, Gt, Not, And, Or, Imp, } --[[ -- «context-0» (to ".context-0") -- This is obsolete, see: -- (find-dn5 "gab.lua") -- (find-dn5 "gab.lua" "contexts-test") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] -- Printing the context comparison = Le(_2*x, y+_3) comparison = Le(_2*x, y+_3):Dbg() ex_expression = Ex(y, Set(_3, _4, _5), comparison) ex_expression = Ex(y, Set(_3, _4, _5), comparison):Dbg() fa_expression = Fa(x, Set(_2, _3, _4), ex_expression) fa_expression:peval() -- [x=2 y=3] 2*x <= y+3 --> T -- [x=2 y=4] 2*x <= y+3 --> T -- [x=2 y=5] 2*x <= y+3 --> T -- [x=2] Ex y in {3, 4, 5}. 2*x <= y+3 --> T -- [x=3 y=3] 2*x <= y+3 --> T -- [x=3 y=4] 2*x <= y+3 --> T -- [x=3 y=5] 2*x <= y+3 --> T -- [x=3] Ex y in {3, 4, 5}. 2*x <= y+3 --> T -- [x=4 y=3] 2*x <= y+3 --> F -- [x=4 y=4] 2*x <= y+3 --> F -- [x=4 y=5] 2*x <= y+3 --> T -- [x=4] Ex y in {3, 4, 5}. 2*x <= y+3 --> T -- Fa x in {2, 3, 4}. Ex y in {3, 4, 5}. 2*x <= y+3 --> T --[[ -- «context-1» (to ".context-1") -- Basic tests for contexts * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] -- dofile "gab.lua" c = newcontext {x=22, y=33} c:print() c:push("z", 44):print() c:push("x", 99):print() c:push("y", nil):print() PP(c) c:pop():print() c:pop():print() c:pop():print() c:pop():print() -- error --[[ -- «app-lambda-1» (to ".app-lambda-1") -- Basic tests for lambda and app * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] f = Lambda(x, x + _2) f7 = App(f, _3 + _4) f:print() f:peval() f7:print() f7:lprint() f7:rprint() f7:peval() -- «app-lambda-def-1» (to ".app-lambda-def-1") P = Def "P" defs.P = Lambda(x, Le(x, _2)) App(P, _1):peval() App(P, _2):peval() App(P, _3):peval() -- «comprehension-1» (to ".comprehension-1") -- (find-dn5 "gab.lua" "comprehension") --[[ * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] _10 = Num(10) A = Set(_1, _2, _3) B = Setof(Gen(x, A), Gen(y, A), Filt(Le(x, y)), Collect(_10*x+y)) C = Setof(Gen(x, A), Gen(y, A), Filt(Le(x, y)), Collect(Tuple(x, y))) D = Subset(Gen(x, A), Filt(Neq(x, _2)), Collect(x)) Setof(Gen(x, A), Collect(Tuple(x, x*x))):preval() B:preval() C:preval() D:preval() --[[ -- «grids-1» (to ".grids-1") -- Test the code for drawing tables * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] defs:vprint() print(columns()) Cols = { App(P, k), P1, P2, P3, P4, False, Def("E_4"), Def("E'_3"), Def("E_3"), Def("E_1"), Def("E'_2"), Def("E_2"), True, } Ps = { False, Ge(k, _4), Or(Eq(k, _1), Eq(k, _4)), Ge(k, _3), Or(Eq(k, _2), Eq(k, _3)), Ge(k, _2), True, } defs:vprint() = columns() -- «parse-1» (to ".parse-1") -- «parse-2» (to ".parse-2") -- (find-dn5file "gab.lua" "Expr.__index.infix =") -- (find-dn5 "gab.lua" "Context") -- (find-dn5 "gab.lua" "precedence") --[[ -- «parse-3» (to ".parse-3") -- (find-dn5 "gab.lua" "precedence-table") -- Parsing expressions (very preliminary) -- (find-es "lua5" "lpeg-quickref") -- (find-dn5 "gab.lua" "recursive-descent") -- (find-dn5 "gab.lua" "recursive-descent" "pa_expr =") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] pparsee "2 * 3 + 4 * 5" pparsee "Fa x in { 2 , 3 , 4 } . x * x < 10" pparsee "Ex x in { 2 , 3 , 4 } . x * x < 10" pparsee "Fa x in { } . x * x < 10" pparsee "Ex x in { } . x * x < 10" pparsee "{ 10 * x + y | x <- { 2 , 3 } , y <- { 3 , 4 } }" pparsee "{ 10 * x + y | x <- { 2 , 3 } , y <- { 3 , 4 } , x < y }" pparsee "{ ( x , y ) | x <- { 2 , 3 } , y <- { 3 , 4 } , x < y }" pparsee " \\ x . x + 2 " pparsee "( \\ x . x + 2 ) 3 " -- here the "3" is not parsed pparsee "( \\ x . x + 2 ) ( 3 )" pparsee "( )" pparsee "2 * 3" pparse "2 + 3 * 4 + 5 * 6 * 7 (eof)" pparse "2 * ( 3 * 4 + 5 * 6 ) + 7" pparse "2 in { 2 , 3 , 4 }" pparse "2 in { 2 | 3 , 4 }" pparse "2 in { 10 * x + y | x <- A , y <- B }" pparsee "{ 10 * x + y | x <- { 2 , 3 } , y <- { 3 , 4 } }" pparsee "{ 10 * x + y | x <- { 2 , 3 } , y <- { 3 , 4 } , x < y }" pparse "x <= 4" pparse "2 in { x <- A | x <= 4 }" pparse "{ x , y }" --[[ -- «modal» (to ".modal") -- (find-dn5 "gab.lua" "modal") -- (find-dn5file "gab.lua" "rectconcat =") -- (find-dn5file "gab.lua" "op == \"Mo\"") * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] sr = stringtorect pp = function (f1, s1, f2, s2) PP(f1(s1)) PP(f2(s2)) print(f1(s1)..f2(s2)..","..f1(s1)..","..f2(s2)) end pp(sr, "abc\ndef", sr, " &") pp(sr, "abc" , sr, " &") PP(sr"abc\ndef") PP(sr"abc\nde") PP(sr"abc\nde" .. sr" &") PP(sr"abc\nde" .. sr" &\nfg") PP(sr"abc\nde" .. sr"abc\nde") PP(splitlines " &\nfg") a = Vee_ "123" b = Vee "123" = b = And(b, b) = And(b, b):tolisp() = And(b, b):torect() = And(_2, _3) = b .. "!" = b:infix() PP(b:infix()) = b:tolisp() print(otype(b:infix())) print(otype(b)) = b = b[1].."abc" = b[1].." bc" = b[1].." & " = b[1]..torect(" & ") = b[1].."&" --[[ -- «parse-lpeg» (to ".parse-lpeg") -- Suffixes on patterns: -- Pat_c is a pattern with exactly one capture -- Pat_scp is OptSpaces * Pat_c * lpeg.Cp() * (eepitch-gab) * (eepitch-kill) * (eepitch-gab) --]] etest "2 <= 3 + 4*5*6 & 7 < 8" eteste "Fa a<-{2,3,4}. Ex b<-{2,3,4}. a*b>10" eteste "Ex a<-{2,3,4}. Ex b<-{2,3,4}. a*b>10" eteste "2*3+4*5" etest "{1,2}" etest "{1}" etest "{}" etest "{1|2}" etest "{1|2,3}" etest "{1<-2|3,4}" eteste " {2, 3, 4} " eteste "{a<-{2, 3, 4} | a<=3}" eteste "Fa a<-{2,3,4}. Ex b<-{2,3,4}. a*b>10" eteste "Ex a<-{2,3,4}. Ex b<-{2,3,4}. a*b>10" eteste "Ex a<-{2,3,4}. Ex b<-{2,3,4}. a*b>10" eteste "\\ a. 2+a*a" eteste "(\\ a. a*a)(5)" etest "2 <= 3 + 4*5*6 & 7 < 8" eteste "2*3+4*5" eteste "Fa x<-{2,3,4}. x*x<10" eteste "Ex x<-{2,3,4}. x*x<10" eteste "Fa x<-{}.x*x<10" eteste "Ex x<-{}.x*x<10" eteste "{10*x+y | x<-{2,3}, y<-{3,4}}" eteste "{10*x+y |x <-{2,3} ,y<-{3,4} ,x<y}" eteste "{(x,y) | x<-{2,3} ,y<-{3,4}, x<y}" eteste "\\x.x+2" eteste "(\\x.x+2)3" -- here the "3" is not parsed eteste "(\\x.x+2)(3)" eteste "()" eteste "2*3" etest "2+3*4+5*6*7 (eof)" etest "2*(3*4+5*6)+7" etest "2<-{2,3,4}" etest "2<-{2|3,4}" etest "2 in {10*x+y | x<-A ,y<-B}" eteste "{10*x+y | x<-{2,3}, y<-{3,4}}" eteste "{10*x+y | x<-{2,3} ,y<-{3,4} , x<y}" eteste "{(x,y) | x<-{2,3} ,y<-{3,4} , x<y}" etest "x<=4" -- Local Variables: -- coding: raw-text-unix -- ee-anchor-format: "«%s»" -- End: