|
Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
/*
* This file:
* http://anggtwu.net/MAXIMA/laurent1.mac.html
* http://anggtwu.net/MAXIMA/laurent1.mac
* (find-angg "MAXIMA/laurent1.mac")
* Author: Eduardo Ochs <eduardoochs@gmail.com>
* See: (find-es "maxima" "laurent")
* http://anggtwu.net/eev-maxima.html
*
* Dot notation for Laurent polynomials, version 1.
* Idea: 456.78 is
*
* 4*10^2 + 5*10^1 + 6*10^0 + 7*10^-1 + 8*10^-2,
*
* and we write it (roughly) as:
*
* [ 4 5 6 . 7 8 ]
*
* We can generalize the 10 to x.
* With the functions of this file we have:
*
* (%i2) lpx(4*x^2 + 5*x^1 + 6*x^0 + 7*x^-1 + 8*x^-2);
* (%o2) [ 4 5 6 . 7 8 ]
*
* The "[ 4 5 6 . 7 8 ]" is a horizontal matrix that has the string
* "." in its fourth position; the "." separates the "integer part"
* from the "fractional part".
*
* These Laurent polynomials are also great for teaching trigonomotric
* identities:
*
* If we define E = e^(ix),
* icos(x) = E + E^-1,
* and isin(x) = E - E^-1,
* then we have cos(x) = 1/2 * icos(x)
* and sin(x) = 1/(2i) * isin(x).
*
* Using Laurent polynomials on E instead of on x we have:
*
* (%i1) lpE(icos(x));
* (%o1) [ 1 0 . 1 ]
* (%i2) lpE(isin(x));
* (%o2) [ 1 0 . - 1 ]
* (%i3) lpE(isin(3*x));
* (%o3) [ 1 0 0 0 . 0 0 - 1 ]
* (%i4) lpE(isin(3*x) * icos(x));
* (%o4) [ 1 0 1 0 0 . 0 - 1 0 - 1 ]
* (%i5) lpE(isin(4*x) + isin(2*x));
* (%o5) [ 1 0 1 0 0 . 0 - 1 0 - 1 ]
* (%i6) lpe( sin(4*x) + sin(2*x));
* (%o6) sin(4 x) + sin(2 x)
* (%i7)
*
* See: (find-es "maxima" "laurent")
* (defun e () (interactive) (find-angg "MAXIMA/laurent1.mac"))
*/
lpdegrees(lp,var) := block(
[revlp,origposdeg,orignegdeg,posdeg,negdeg],
revlp : subst([var=var^-1], lp),
origposdeg : hipow( lp, var),
orignegdeg : -hipow(revlp, var),
posdeg : max(origposdeg, 0),
negdeg : min(orignegdeg, 0),
[posdeg,negdeg])$
lpcoeffs0(lp,var,hilo) := makelist(ratcoef(lp,var,k), k, hilo[1],hilo[2], -1)$
lpcoeffs (lp,var) := apply('lpcoeffs0, [lp,var, lpdegrees(lp,var)]);
lpdot (lp,var) := block([hi,lo,posdigits,negdigits],
[hi,lo] : lpdegrees(lp,var),
posdigits : lpcoeffs0(lp,var,[hi,0]),
negdigits : lpcoeffs0(lp,var,[-1,lo]),
matrix(append(posdigits, ["."], negdigits))
)$
Exponentialize(f) := subst([x=1/%i,%e=E], expand(exponentialize(f)))$
lpx(lp) := lpdot(expand(lp),x)$
lpE(f) := lpdot(Exponentialize(f),E)$
lpe(f) := expand(demoivre(expand(exponentialize(f))))$
/*
* (eepitch-maxima)
* (eepitch-kill)
* (eepitch-maxima)
load("laurent1.mac");
lpx(4*x^2 + 5*x^1 + 6*x^0 + 7*x^-1 + 8*x^-2);
lpx(x^4);
lpx(x^-4);
g1 : 4*x^2 + 5*x^1 + 6*x^0 + 7*x^-1 + 8*x^-2;
g1 : 4*x^2 + 5*x^1 + 6*x^0 + 7*x^-1 + 8*x^-2 + 9*x^-3;
lpx(g1);
lpx(g1 * x);
lpx(g1 * x^2);
lpx(g1 * x );
lpx(g1 * 10*x );
lpx(g1 * (10*x + 1));
h : cos(x)^3;
Exponentialize(h);
lpE(h);
lpE(h * 8);
icos(x) := 2 * cos(x);
isin(x) := 2*%i * sin(x);
lpE( cos(x) * 2);
lpE( cos(x)^2 * 4);
lpE( cos(x)^3 * 8);
lpE( sin(x) * 2*%i);
lpE( sin(x)^2 * (2*%i)^2);
lpE( sin(x)^3 * (2*%i)^3);
lpE( sin(2*x) * (2*%i));
lpE( sin(2*x)^2 * (2*%i)^2);
linenum : 0;
lpE(icos(x));
lpE(isin(x));
lpE(isin(3*x));
lpE(isin(3*x) * icos(x));
lpE(isin(4*x) + isin(2*x));
lpe( sin(4*x) + sin(2*x));
*/