Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2021lindenhovius-june.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2021lindenhovius-june.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2021lindenhovius-june.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2021lindenhovius-june.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2021lindenhovius-june.pdf")) % (defun e () (interactive) (find-LATEX "2021lindenhovius-june.tex")) % (defun u () (interactive) (find-latex-upload-links "2021lindenhovius-june")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2021lindenhovius-june.pdf")) % (code-eec-LATEX "2021lindenhovius-june") % (find-pdf-page "~/LATEX/2021lindenhovius-june.pdf") % (find-sh0 "cp -v ~/LATEX/2021lindenhovius-june.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2021lindenhovius-june.pdf /tmp/pen/") % file:///home/edrx/LATEX/2021lindenhovius-june.pdf % file:///tmp/2021lindenhovius-june.pdf % file:///tmp/pen/2021lindenhovius-june.pdf % http://angg.twu.net/LATEX/2021lindenhovius-june.pdf % (find-LATEX "2019.mk") % «.1» (to "1") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") %\input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % %L -- (find-dn6 "output.lua" "Deletecomments-class") % %L deletecomments = function (bigstr) return DeleteComments.from(bigstr) end % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu %\printbibliography % «1» (to ".1") % (linjp 1 "1") % (linja "1") {\bf E-mail from Bert Lindenhovius, 2021jun30} % https://mail.google.com/mail/ca/u/0/#inbox/QgrcJHrtvWmlxhvCBggGFXMszBggGkmQmdv \def\Downs{\mathsf{D}} \def\singp{\{p\}} \def\setofsc#1#2{\{\,#1\;:\;#2\,\}} \def\nuc {(·)^*} \def\Nucs {\mathsf{Nucs}} \def\GrTops{\mathsf{GrTops}} \def\dno {{↓}^\circ} \def\dnu {{↓}u} \def\dnus {(\dnu)^*} \def\dnou {\dno u} \def\dnous {(\dnou)^*} \def\dnouss{(\dnou)^{**}} I think you are correct, but I think the expression can be simplified: $X_j= \setofsc{p\in P}{p\notin j({↓}p∖\singp)}$. Reason: by (iii) of Definition B.6, it follows that $j$ is monotone. Now $p$ in $j({↓}p∖\singp)$ implies ${↓}p⊆ j({↓}p∖\singp)$ and by (ii) of Def. B.6, we obtain $j({↓}p)⊆ (j∘j)({↓}p∖\singp))=j({↓}p∖\singp)⊆ j({↓}p)$ (last inclusion because $j$ is monotone). Conversely, if $j({↓}p∖\singp)=j({↓}p)$, then by (i) of Def. B.6 we have ${↓}p⊆ j({↓}p)=j({↓}p∖\singp)$, hence $p$ in $j({↓}p∖\singp)$ if and only if $j({↓}p∖\singp)=j({↓}p)$. %: %: %: [p∈j({↓}p∖\singp)]^1 %: ------------------- ------------------ %: {↓}p⊆j({↓}p∖\singp) j\;\text{monotone} [j({↓}p)=j({↓}p∖\singp)]^1 %: ----------------------- ---------------------- ---------------------------B.6.(i) %: {↓}p⊆(j∘j)({↓}p∖\singp) j({↓}p∖\singp)⊆j({↓}p) {↓}p⊆j({↓}p)=j({↓}p∖\singp) %: -------------------------------------------------- --------------------------- %: j({↓}p)⊆(j∘j)({↓}p∖\singp))=j({↓}p∖\singp)⊆j({↓}p) {↓}p⊆j({↓}p∖\singp) %: -------------------------------------------------- ------------------- %: j({↓}p)=j({↓}p∖\singp) p∈j({↓}p∖\singp) %: ----------------------------------------------------------------------1 %: (p∈j({↓}p∖\singp))↔(j({↓}p)=j({↓}p∖\singp)) %: %: ^reason %: %: %: %: %: [u∈\dnous]^1 %: ----------- ---------- %: \dnu⊆\dnous \dnou⊂\dnu [\dnus=\dnous]^1 %: ------------ ------------ m -----------------B.6.(i) %: \dnu⊆\dnouss \dnous⊂\dnus \dnu⊆\dnus=\dnous %: ----------------------------- ----------------- %: \dnus⊆\dnouss=\dnous⊂\dnus \dnu⊆\dnous %: ----------------------------- ----------- %: \dnus=\dnous u∈\dnous %: -----------------------------------------1 %: (u∈\dnous)↔(\dnus=\dnous) %: %: ^reason2 %: %: \pu % % (lindp 50 "B.6") % (linda "B.6") % $$\ded{reason}$$ \bsk In my notation... % $$\ded{reason2}$$ % (lindp 12 "2.9") % (linda "2.9") \newpage In order to show that the expression for $X_j$ is correct, I find it easiest is to start with the subset $X_J$ associated by a Grothendieck topology $J$ on $P$, which by Lemma 2.9 is given by all $p$ in $P$ such that $J(p)={{↓}p}$. By Theorem B.25, to any nucleus $j$, we can associate at Grothendieck topology $J_j$ by $J_j(p) = \setofsc{S \in \Downs({↓}p)}{p \in j(S)}$ Hence, to $j$ we can associate the subset $X_{J_j}$ of $P$ consisting of all $p$ such that $J_j(p)=\{{↓}p\}$, i.e., all $p$ such that ${↓}p$ is the only downset $S$ of ${↓}p$ with $p$ in $j(S)$. Then $X_{J_j}=X_j$ as defined above, which can be seen as follows. % $$\begin{array}{lcr} J_j(p) &=& \setofsc{S∈\Downs({↓}p)}{p∈j(S)} \\ X_J &=& \setofsc {p∈P} {J(p)=\{{↓}p\}} \\ X_{J_j} &=& \setofsc {p∈P} {\setofsc{S∈\Downs({↓}p)}{p∈j(S)}=\{{↓}p\}} \\ &=& \setofsc {p∈P} {∀S∈\Downs({↓}p). (p∈j(S))↔(S={↓}p)} \\ (p∈X_{J_j}) &=& ∀S∈\Downs({↓}p). (p∈j(S))↔(S={↓}p) \\ \\ X_j &=& \setofsc{p∈P}{p\not∈j({↓}p∖\singp)} \\ (p∈X_j) &=& p\not∈j({↓}p∖\singp) \\ \end{array} $$ Let $p$ in $X_{J_j}$. Let ${↓}p∖\singp$. Since ${↓}p$ is the only downset $S$ of ${↓}p$ with $p$ in $j(S)$, we cannot have $p$ in $j({↓}p∖\singp)$, so $p\in X_j$. %: %: %: p∈X_{J_j} %: --------------------------------- %: {↓}p∖\singp∈\Downs({↓}p) ∀S∈\Downs({↓}p).(p∈j(S))↔(S={↓}p) %: ------------------------------------------------------------ %: (p∈j({↓}p∖\singp))↔({↓}p∖\singp={↓}p) %: ------------------------------------- %: (p\not∈j({↓}p∖\singp))↔({↓}p∖\singp\not={↓}p) %: ------------------------------- %: p\not∈j({↓}p∖\singp) %: -------------------- %: p∈X_j %: %: ^foo %: \pu $$\ded{foo}$$ \newpage Conversely, if $p$ in $X_j$, let $S$ in $\Downs({↓}p)$ such that $S\neq {↓}p$. Then we must have that $p\notin S$, hence $S⊆ {↓}p∖\singp$, hence $j(S)⊆ j({↓}p∖\singp)$, and since $j({↓}p∖\singp)$ does not contain, neither does $j(S)$. We conclude that ${↓}p$ is the only downset $S$ of ${↓}p$ such that $p$ in $j(S)$, whence $p$ in $X_j$. Best, Bert \def\H#1{\hspace{#1cm}} %: %: %: [S∈\Downs({↓}p)]^2 %: ------------------ %: S⊂{↓}p [S\neq{↓}p]^1 [S∈\Downs({↓}p)]^2 %: ------------------------------- -------------- %: p\not∈S S⊂{↓}p %: ------------------------------------- %: S⊂{↓}p∖\{p\} p∈X_j %: ------------------ ------------------- %: j(S)⊂j({↓}p∖\{p\}) \H{-1} p\not∈j({↓}p∖\{p\}) %: ---------------------------------------------------- %: p\not∈j(S) %: ------------------------ %: (S\neq{↓}p)→(p\not∈j(S)) %: ------------------------ ================= %: (p∈j(S))→(S={↓}p) \H{-1} (S={↓}p)→(p∈j(S)) %: ----------------------------------------------------- %: (p∈j(S))↔(S={↓}p) %: ---------------------------------2 %: ∀S∈\Downs({↓}p).(p∈j(S))↔(S={↓}p) %: --------------------------------- %: p∈X_{J_j} %: %: ^foo %: \pu $$\ded{foo}$$ \newpage Garbage: $$\begin{array}{lcr} X_J &=& \setofsc {p∈P} {J(p)=\{{↓}p\}} \\ (J↦X)(J) &=& \setofsc {p∈P} {J(p)=\{{↓}p\}} \\ (J↦X) &=& λJ.\setofsc {p∈P} {J(p)=\{{↓}p\}} \\ (J↦𝓨) &=& λJ∈\GrTops(𝐃).\setofst {u∈𝐃} {J(u)=\{{↓}u\}} \\ 𝓨 &=& \setofst {u∈𝐃} {J(u)=\{{↓}u\}} \\ \end{array} $$ $$\begin{array}{lcr} J_j(p) &=& \setofsc{S∈\Downs({↓}p)}{p∈j(S)} \\ (j↦J)(j)(p) &=& \setofsc{S∈\Downs({↓}p)}{p∈j(S)} \\ (j↦J) &=& λj.λp.\setofsc{S∈\Downs({↓}p)}{p∈j(S)} \\ (\nuc↦J) &=& λ\nuc∈\Nucs(...).λu∈𝐃.\setofst{𝓢∈Ω(u)}{u∈𝓢^*} \\ J &=& λu∈𝐃.\setofst{𝓢∈Ω(u)}{u∈𝓢^*} \\ J(u) &=& \setofst{𝓢∈Ω(u)}{u∈𝓢^*} \\ \\ 𝓨 &=& \setofst {u∈𝐃} {J(u)=\{{↓}u\}} \\ &=& \setofst {u∈𝐃} {\setofst{𝓢∈Ω(u)}{u∈𝓢^*}=\{{↓}u\}} \\ &=& \setofst {u∈𝐃} {∀𝓢∈Ω(u). (u∈𝓢^*)↔(𝓢={↓}u)} \\ \end{array} $$ \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2021lindenhovius-june veryclean make -f 2019.mk STEM=2021lindenhovius-june pdf % Local Variables: % coding: utf-8-unix % ee-tla: "linj" % End: