Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020seelyhyp-poster.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020seelyhyp-poster.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020seelyhyp-poster.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020seelyhyp-poster.pdf")) % (defun e () (interactive) (find-LATEX "2020seelyhyp-poster.tex")) % (defun u () (interactive) (find-latex-upload-links "2020seelyhyp-poster")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020seelyhyp-poster.pdf") % (find-sh0 "cp -v ~/LATEX/2020seelyhyp-poster.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020seelyhyp-poster.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020seelyhyp-poster.pdf % file:///tmp/2020seelyhyp-poster.pdf % file:///tmp/pen/2020seelyhyp-poster.pdf % http://angg.twu.net/LATEX/2020seelyhyp-poster.pdf % (find-LATEX "2019.mk") % «.adjoints-generic» (to "adjoints-generic") % «.adjoints-quants» (to "adjoints-quants") % «.adjoints-equal» (to "adjoints-equal") % «.adjoints-f» (to "adjoints-f") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "limp-abx") \DeclareFontFamily{U}{matha}{\hyphenchar\font45} \DeclareFontShape{U}{matha}{m}{n}{ <5> <6> <7> <8> <9> <10> gen * matha <10.95> matha10 <12> <14.4> <17.28> <20.74> <24.88> matha12 }{} \DeclareSymbolFont{matha}{U}{matha}{m}{n} \DeclareMathSymbol{\varsubset}{3}{matha}{"80} \DeclareMathSymbol{\varsupset}{3}{matha}{"81} \def\limp{\varsupset} \catcode`⊸=13 \def⊸{\limp} % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\pded#1{\left(\cded{#1}\right)} \def\pdedscale#1#2{\scalebox{#1}{$\pded{#2}$}} \def\eo #1#2{#1{=}#2} \def\ea#1#2#3{#1{=}#2∧#3} \def\ei#1#2#3{#1{=}#2⊸#3} % _ _ _ __ _ % / \ __| |(_) / _| __ _ ___ _ __ ___ _ __(_) ___ % / _ \ / _` || | | |_ / _` |/ _ \ '_ \ / _ \ '__| |/ __| % / ___ \ (_| || | | _| | (_| | __/ | | | __/ | | | (__ % /_/ \_\__,_|/ | |_| \__, |\___|_| |_|\___|_| |_|\___| % |__/ |___/ % % «adjoints-generic» (to ".adjoints-generic") Adjoints to an arbitrary $f^*$: \bsk %D diagram adjs-generic %D 2Dx 100 +40 %D 2D 100 A0 |-> A1 %D 2D | | %D 2D | |-> | %D 2D | | %D 2D +25 A2 |-> A3 %D 2D | | %D 2D | <-> | %D 2D | | %D 2D +25 B0 <-| B1 %D 2D | | %D 2D | <-| | %D 2D | | %D 2D +25 B2 <-| B3 %D 2D | | %D 2D | <-> | %D 2D | | %D 2D +25 C0 |-> C1 %D 2D | | %D 2D | |-> | %D 2D | | %D 2D +25 C2 |-> C3 %D 2D %D 2D +20 D0 <=> D1 %D 2D %D 2D +20 E2 --> E3 %D 2D %D ren A0 A1 ==> A_1 Σ_fA_1 %D ren A2 A3 ==> A_2 Σ_fA_2 %D ren B0 B1 ==> f^*B_1 B_1 %D ren B2 B3 ==> f^*B_2 B_2 %D ren C0 C1 ==> C_1 Π_fC_1 %D ren C2 C3 ==> C_2 Π_fC_2 %D ren D0 D1 ==> 𝐛P(X) 𝐛P(Y) %D ren E2 E3 ==> X Y %D %D (( A0 A1 |-> %D A2 A3 |-> %D B0 B1 <-| %D B2 B3 <-| %D C0 C1 |-> %D C2 C3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D A2 B1 harrownodes nil 20 nil |-> sl^ %D A2 B1 harrownodes nil 20 nil <-| sl_ %D B0 B3 harrownodes nil 20 nil <-| %D B2 C1 harrownodes nil 20 nil <-| sl^ %D B2 C1 harrownodes nil 20 nil |-> sl_ %D C0 C3 harrownodes nil 20 nil |-> %D A0 A2 -> .plabel= l α %D A1 A3 -> .plabel= r Σ_fα %D A2 B0 -> .plabel= l \sm{f\\(Σ_f^♯)g} %D A3 B1 -> .plabel= r \sm{(Σ_f^♭)f\\g} %D B0 B2 -> .plabel= l f^*β %D B1 B3 -> .plabel= r β %D B2 C0 -> .plabel= l \sm{(Π_f^♭)h\\k} %D B3 C1 -> .plabel= r \sm{h\\(Π_f^♯)k} %D C0 C2 -> .plabel= l γ %D C1 C3 -> .plabel= r Π_fγ %D D0 D1 -> sl^^ .plabel= a Σ_f %D D0 D1 <- .plabel= m f^* %D D0 D1 -> sl__ .plabel= b Π_f %D E2 E3 -> .plabel= a f %D )) %D enddiagram %D $$\pu \diag{adjs-generic} $$ \newpage % _ _ _ _ % / \ __| |(_) __ _ _ _ __ _ _ __ | |_ ___ % / _ \ / _` || | / _` | | | |/ _` | '_ \| __/ __| % / ___ \ (_| || | | (_| | |_| | (_| | | | | |_\__ \ % /_/ \_\__,_|/ | \__, |\__,_|\__,_|_| |_|\__|___/ % |__/ |_| % % «adjoints-quants» (to ".adjoints-quants") Quantifiers as adjoints to adding a variable: \bsk %: %: [\Pxy]^1 %: ::::::α %: \Qxy %: -------- %: \Exy\Pxy \Exy\Qxy %: ----------------------1 %: \Exy\Qxy %: %: ^Sigmapi-F %: %: %: \Qxy %: -------- %: \Exy\Qxy %: ::: %: \Rx %: %: ^Sigmapi-transposeleft %: %: [\Qxy]^1 %: :::f %: \Exy\Qxy \Rx %: ---------------1 %: \Rx %: %: ^Sigmapi-transposeright %: %: %: \Rx %: :::β %: \Sx %: %: ^pistar-F %: %: %: \Sx %: ::::::::k %: \Fay\Txy %: -------- %: \Txy %: %: ^Pipi-transposeleft %: %: [\Sx]^1 %: :::: %: \Sx \Txy %: --------- %: \Fay\Txy %: %: ^Pipi-transposeright %: %: %: %: \Fay\Txy [\Txy]^1 %: -------- ::::γ %: \Txy \Uxy %: ---------------- %: \Fay\Uxy %: %: ^Pipi-F %: \def\Pxy{Pxy} \def\Qxy{Qxy} \def\Rx {Rx} \def\Sx {Sx} \def\Txy{Txy} \def\Uxy{Uxy} \def\Exy{∃y.} \def\Fay{∀y.} %D diagram adjs-pi* %D 2Dx 100 +40 %D 2D 100 A0 |-> A1 %D 2D | | %D 2D | |-> | %D 2D | | %D 2D +25 A2 |-> A3 %D 2D | | %D 2D | <-> | %D 2D | | %D 2D +25 B0 <-| B1 %D 2D | | %D 2D | <-| | %D 2D | | %D 2D +25 B2 <-| B3 %D 2D | | %D 2D | <-> | %D 2D | | %D 2D +25 C0 |-> C1 %D 2D | | %D 2D | |-> | %D 2D | | %D 2D +25 C2 |-> C3 %D 2D %D 2D +20 D0 <=> D1 %D 2D %D 2D +20 E0 |-> E1 %D 2D +10 E2 --> E3 %D 2D %D ren A0 A1 ==> \Pxy \Exy\Pxy %D ren A2 A3 ==> \Qxy \Exy\Qxy %D ren B0 B1 ==> \Rx \Rx %D ren B2 B3 ==> \Sx \Sx %D ren C0 C1 ==> \Txy \Fay\Txy %D ren C2 C3 ==> \Uxy \Fay\Uxy %D ren D0 D1 ==> 𝐛P(X{×}Y) 𝐛P(X) %D ren E0 E1 ==> (x,y) x %D ren E2 E3 ==> X{×}Y X %D %D (( A0 A1 |-> %D A2 A3 |-> %D B0 B1 <-| %D B2 B3 <-| %D C0 C1 |-> %D C2 C3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D A2 B1 harrownodes nil 20 nil |-> sl^ %D A2 B1 harrownodes nil 20 nil <-| sl_ %D B0 B3 harrownodes nil 20 nil <-| %D B2 C1 harrownodes nil 20 nil <-| sl^ %D B2 C1 harrownodes nil 20 nil |-> sl_ %D C0 C3 harrownodes nil 20 nil |-> %D A0 A2 -> .plabel= l α %D A1 A3 -> .plabel= r Σ_πα %D A2 B0 -> .plabel= l \sm{f\\(Σ_π^♯)g} %D A3 B1 -> .plabel= r \sm{(Σ_π^♭)f\\g} %D B0 B2 -> .plabel= l π^*β %D B1 B3 -> .plabel= r β %D B2 C0 -> .plabel= l \sm{(Π_π^♭)h\\k} %D B3 C1 -> .plabel= r \sm{h\\(Π_π^♯)k} %D C0 C2 -> .plabel= l γ %D C1 C3 -> .plabel= r Π_πγ %D D0 D1 -> sl^^ .plabel= a Σ_π %D D0 D1 <- .plabel= m π^* %D D0 D1 -> sl__ .plabel= b Π_π %D E0 E1 |-> %D E2 E3 -> .plabel= a π %D %D A1 A3 midpoint relplace 55 0 Σ_πα:=\pdedscale{0.55}{Sigmapi-F} %D A3 B1 midpoint relplace 55 0 (Σ_π^♭)f:=\pdedscale{0.55}{Sigmapi-transposeright} %D A2 B0 midpoint relplace -50 0 (Σ_π^♯)g:=\pdedscale{0.45}{Sigmapi-transposeleft} %D B0 B2 midpoint relplace -50 0 π^*β:=\pdedscale{0.55}{pistar-F} %D B2 C0 midpoint relplace -50 0 (Π_π^♭)h:=\pdedscale{0.40}{Pipi-transposeleft} %D B3 C1 midpoint relplace 50 0 (Π_π^♯)k:=\pdedscale{0.40}{Pipi-transposeright} %D C1 C3 midpoint relplace 55 0 Π_πγ:=\pdedscale{0.55}{Pipi-F} %D )) %D enddiagram %D \pu \phantom{a} \hspace{-20pt} $ \diag{adjs-pi*} $ \newpage % _ _ _ % / \ __| |(_) _____ % / _ \ / _` || | |_____| % / ___ \ (_| || | |_____| % /_/ \_\__,_|/ | % |__/ % % «adjoints-equal» (to ".adjoints-equal") Equality as an adjoint to collapsing two variables: \bsk \def\exx {x{=}x} \def\exxp{x{=}x'} \def\Px {Px} \def\Qx {Qx} \def\Rxx {Rxx} \def\Rxxp{Rxx'} \def\Sxx {Sxx} \def\Sxxp{Sxx'} \def\Tx {Tx} \def\Ux {Ux} %: %: \exxp∧\Px %: --------- %: \exxp∧\Px \Px %: --------- :::α %: \exxp \Qx %: ---------------- %: \exxp∧\Qx %: %: ^SigmaD-F %: %: %: ---- %: \exx \Qx [\exxp∧\Qx]^1 %: ---------- :::::::::::g %: \exx∧\Qx \Rxxp %: --------------------[x':=x];1 %: \Rxx %: %: ^SigmaD-transposeleft %: %: \exxp∧\Qx %: --------- %: \exxp∧\Qx \Qx %: --------- ::::f %: \exxp \Rxx %: ----------------- %: \Rxxp %: %: ^SigmaD-transposeright %: %: %: %: %: [\Rxxp]^1 %: :::::::::β %: \Rxx \Sxxp %: ------------[x':=x];1 %: \Sxx %: %: ^Dstar-F %: %: %: %: %: [\Sxxp]^1 %: :::::::::h %: \Sxx \exxp⊸\Tx %: ---- ----------------[x':=x];1 %: \exx \exx⊸\Tx %: ---------------- %: \Tx %: %: ^PiD-transposeleft %: %: [\Sxx]^1 %: ::::::::k %: \Tx %: --------1 %: [\exxp]^2 \Sxx⊸\Tx %: -------------------- %: \Sxxp \Sxxp⊸\Tx %: ------------------ %: \Tx %: ---------2 %: \exxp⊸\Tx %: %: ^PiD-transposeright %: %: [\exxp]^1 \exxp⊸\Tx %: --------------------- %: \Tx %: :::γ %: \Ux %: ---------1 %: \exxp⊸\Ux %: %: ^PiD-F %: %D diagram adjs-Delta* %D 2Dx 100 +40 %D 2D 100 A0 |-> A1 %D 2D | | %D 2D | |-> | %D 2D | | %D 2D +25 A2 |-> A3 %D 2D | | %D 2D | <-> | %D 2D | | %D 2D +25 B0 <-| B1 %D 2D | | %D 2D | <-| | %D 2D | | %D 2D +25 B2 <-| B3 %D 2D | | %D 2D | <-> | %D 2D | | %D 2D +25 C0 |-> C1 %D 2D | | %D 2D | |-> | %D 2D | | %D 2D +25 C2 |-> C3 %D 2D %D 2D +20 D0 <=> D1 %D 2D %D 2D +20 E0 |-> E1 %D 2D +10 E2 --> E3 %D 2D %D ren A0 A1 ==> \Px \exxp∧\Px %D ren A2 A3 ==> \Qx \exxp∧\Qx %D ren B0 B1 ==> \Rxx \Rxxp %D ren B2 B3 ==> \Sxx \Sxxp %D ren C0 C1 ==> \Tx \exxp⊸\Tx %D ren C2 C3 ==> \Ux \exxp⊸\Ux %D ren D0 D1 ==> 𝐛P(X) 𝐛P(X{×}X) %D ren E0 E1 ==> x (x,x') %D ren E2 E3 ==> X X{×}X %D %D (( A0 A1 |-> %D A2 A3 |-> %D B0 B1 <-| %D B2 B3 <-| %D C0 C1 |-> %D C2 C3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D A2 B1 harrownodes nil 20 nil |-> sl^ %D A2 B1 harrownodes nil 20 nil <-| sl_ %D B0 B3 harrownodes nil 20 nil <-| %D B2 C1 harrownodes nil 20 nil <-| sl^ %D B2 C1 harrownodes nil 20 nil |-> sl_ %D C0 C3 harrownodes nil 20 nil |-> %D A0 A2 -> .plabel= l α %D A1 A3 -> .plabel= r Σ_Δα %D A2 B0 -> .plabel= l \sm{f\\(Σ_Δ^♯)g} %D A3 B1 -> .plabel= r \sm{(Σ_Δ^♭)f\\g} %D B0 B2 -> .plabel= l Δ^*β %D B1 B3 -> .plabel= r β %D B2 C0 -> .plabel= l \sm{(Π_Δ^♭)h\\k} %D B3 C1 -> .plabel= r \sm{h\\(Π_Δ^♯)k} %D C0 C2 -> .plabel= l γ %D C1 C3 -> .plabel= r Π_Δγ %D D0 D1 -> sl^^ .plabel= a Σ_Δ %D D0 D1 <- .plabel= m Δ^* %D D0 D1 -> sl__ .plabel= b Π_Δ %D E0 E1 |-> %D E2 E3 -> .plabel= a Δ %D %D A1 A3 midpoint relplace 65 0 Σ_Δα:=\pdedscale{0.55}{SigmaD-F} %D A3 B1 midpoint relplace 65 0 (Σ_Δ^♭)f:=\pdedscale{0.55}{SigmaD-transposeright} %D A2 B0 midpoint relplace -65 0 (Σ_Δ^♯)g:=\pdedscale{0.45}{SigmaD-transposeleft} %D B0 B2 midpoint relplace -65 0 Δ^*β:=\pdedscale{0.55}{Dstar-F} %D B2 C0 midpoint relplace -65 0 (Π_Δ^♭)h:=\pdedscale{0.40}{PiD-transposeleft} %D B3 C1 midpoint relplace 65 0 (Π_Δ^♯)k:=\pdedscale{0.40}{PiD-transposeright} %D C1 C3 midpoint relplace 65 0 Π_Δγ:=\pdedscale{0.55}{PiD-F} %D )) %D enddiagram %D \pu \phantom{a} \hspace{-70pt} $ \diag{adjs-Delta*} $ \newpage % _ _ _ __ % / \ __| |(_)___ / _| % / _ \ / _` || / __| | |_ % / ___ \ (_| || \__ \ | _| % /_/ \_\__,_|/ |___/ |_| % |__/ % % «adjoints-f» (to ".adjoints-f") Adjoints to $(y:=f(x))^*$ can be built using quantifiers and equality: \def\Px{Px} \def\Qx{Qx} \def\Ry{Ry} \def\Sy{Sy} \def\Rfx{Rfx} \def\Sfx{Sfx} \def\Tx{Txy} \def\Ux{Uxy} \def\Exx{∃x.} \def\Fax{∃x.} \def\fxy{fx{=}y} \def\fxfx{fx{=}fx} \bsk %: %: %: %: [\fxy∧\Px]^1 %: ------------ %: [\fxy∧\Px]^1 \Px %: ------------ :::α %: \fxy \Qx %: ----------------- %: \fxy∧\Qx %: ------------ %: \Exy\fxy∧\Px \Exx\fxy∧\Qx %: ----------------------------1 %: \Exx\fxy∧\Qx %: %: ^Sigmaf-F %: %: %: %: %: %: [\fxy∧\Qx]^1 %: ------------ %: [\fxy∧\Qx]^1 \Exx\fxy∧\Qx %: ----- ------------ ::: %: \fxfx \Qx \fxy \Ry %: ---------- ------------------- %: \fxfx∧\Qx \Rfx %: -----------------[y:=fx];1 %: \Rfx %: %: ^Sigmaf-transposeleft %: %: [\fxy∧\Qx]^1 %: ------------ %: [\fxy∧\Qx]^1 \Qx %: ------------ ::::f %: \fxy \Rfx %: -------------- %: \Exx\fxy∧\Qx \Ry %: ---------------------1 %: \Ry %: %: ^Sigmaf-transposeright %: %: %: %: [\Ry]^1 %: :::::β %: \Rfx \Sy %: ----------[y:=fx]^1 %: \Sfx %: %: ^fstar-F %: %: %: [\Sy]^1 %: ::::::::::::h %: \Fay\fxy⊸\Tx %: ------------ %: \Sfx \fxy⊸\Tx %: ----- ------------------[y:=fx];1 %: \fxfx \fxfx⊸\Tx %: --------------------- %: \Tx %: %: ^Pif-transposeleft %: %: %: [\fxy]^1 [\Sy]^2 %: ---------------- %: Sfx %: ::: %: Tx %: --------1 %: \Sy \fxy⊸\Tx %: -------------2 %: \Fax\fxy⊸\Tx %: %: ^Pif-transposeright %: %: %: [\fxy]^1 [\fxy⊸\Tx]^2 %: ---------------------- %: \Tx %: :::γ %: \Ux %: --------1 %: \Fax\fxy⊸\Tx \fxy⊸\Ux %: -----------------------2 %: \Fax\fxy⊸\Ux %: %: ^Pif-F %: \def\Pxy{Pxy} \def\Qxy{Qxy} \def\Rx {Rx} \def\Sx {Sx} \def\Tx {Tx} \def\Ux {Ux} \def\Exy{∃y.} \def\Fay{∀y.} %D diagram adjs-f* %D 2Dx 100 +40 %D 2D 100 A0 |-> A1 %D 2D | | %D 2D | |-> | %D 2D | | %D 2D +25 A2 |-> A3 %D 2D | | %D 2D | <-> | %D 2D | | %D 2D +25 B0 <-| B1 %D 2D | | %D 2D | <-| | %D 2D | | %D 2D +25 B2 <-| B3 %D 2D | | %D 2D | <-> | %D 2D | | %D 2D +25 C0 |-> C1 %D 2D | | %D 2D | |-> | %D 2D | | %D 2D +25 C2 |-> C3 %D 2D %D 2D +20 D0 <=> D1 %D 2D %D 2D +20 E0 |-> E1 %D 2D +10 E2 --> E3 %D 2D %D ren A0 A1 ==> \Px \Exx\fxy∧\Px %D ren A2 A3 ==> \Qx \Exx\fxy∧\Qx %D ren B0 B1 ==> \Rfx \Ry %D ren B2 B3 ==> \Sfx \Sy %D ren C0 C1 ==> \Tx \Exx\fxy⊸\Tx %D ren C2 C3 ==> \Ux \Exx\fxy⊸\Ux %D ren D0 D1 ==> 𝐛P(X) 𝐛P(Y) %D ren E0 E1 ==> x fx %D ren E2 E3 ==> X Y %D %D (( A0 A1 |-> %D A2 A3 |-> %D B0 B1 <-| %D B2 B3 <-| %D C0 C1 |-> %D C2 C3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D A2 B1 harrownodes nil 20 nil |-> sl^ %D A2 B1 harrownodes nil 20 nil <-| sl_ %D B0 B3 harrownodes nil 20 nil <-| %D B2 C1 harrownodes nil 20 nil <-| sl^ %D B2 C1 harrownodes nil 20 nil |-> sl_ %D C0 C3 harrownodes nil 20 nil |-> %D A0 A2 -> .plabel= l α %D A1 A3 -> .plabel= r Σ_πα %D A2 B0 -> .plabel= l \sm{f\\(Σ_π^♯)g} %D A3 B1 -> .plabel= r \sm{(Σ_π^♭)f\\g} %D B0 B2 -> .plabel= l π^*β %D B1 B3 -> .plabel= r β %D B2 C0 -> .plabel= l \sm{(Π_π^♭)h\\k} %D B3 C1 -> .plabel= r \sm{h\\(Π_π^♯)k} %D C0 C2 -> .plabel= l γ %D C1 C3 -> .plabel= r Π_πγ %D D0 D1 -> sl^^ .plabel= a Σ_f %D D0 D1 <- .plabel= m f^* %D D0 D1 -> sl__ .plabel= b Π_f %D E0 E1 |-> %D E2 E3 -> .plabel= a π %D %D A1 A3 midpoint relplace 70 0 Σ_πα:=\pdedscale{0.40}{Sigmaf-F} %D A3 B1 midpoint relplace 70 0 (Σ_π^♭)f:=\pdedscale{0.40}{Sigmaf-transposeright} %D A2 B0 midpoint relplace - 0 (Σ_π^♯)g:=\pdedscale{0.40}{Sigmaf-transposeleft} %D B0 B2 midpoint relplace -50 0 π^*β:=\pdedscale{0.55}{fstar-F} %D B2 C0 midpoint relplace -60 0 (Π_π^♭)h:=\pdedscale{0.40}{Pif-transposeleft} %D B3 C1 midpoint relplace 55 0 (Π_π^♯)k:=\pdedscale{0.40}{Pif-transposeright} %D C1 C3 midpoint relplace 70 0 Π_πγ:=\pdedscale{0.40}{Pif-F} %D )) %D enddiagram %D \pu \phantom{a} \hspace{-75pt} $ \diag{adjs-f*} $ %\printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020seelyhyp-poster veryclean make -f 2019.mk STEM=2020seelyhyp-poster pdf % Local Variables: % coding: utf-8-unix % ee-tla: "shp" % End: