Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020riehl.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020riehl.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020riehl.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020riehl.pdf")) % (defun e () (interactive) (find-LATEX "2020riehl.tex")) % (defun u () (interactive) (find-latex-upload-links "2020riehl")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020riehl.pdf") % (find-sh0 "cp -v ~/LATEX/2020riehl.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020riehl.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020riehl.pdf % file:///tmp/2020riehl.pdf % file:///tmp/pen/2020riehl.pdf % http://anggtwu.net/LATEX/2020riehl.pdf % (find-LATEX "2019.mk") % «.title» (to "title") % «.2.2.9._matrices» (to "2.2.9._matrices") % «.2.3._univ-props-and-elts» (to "2.3._univ-props-and-elts") % «.2.3.4._example-Zx» (to "2.3.4._example-Zx") % «.2.3.7._example-bilin» (to "2.3.7._example-bilin") % «.2.4._cat-of-elements» (to "2.4._cat-of-elements") % «.4._adjunctions» (to "4._adjunctions") % «.4.5.2._RAPL» (to "4.5.2._RAPL") % «.6.1._kan-extensions» (to "6.1._kan-extensions") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") %\usepackage[a4paper,landscape]{geometry} \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\Lan{\text{Lan}} \def\Ran{\text{Ran}} \def\sfC{\mathsf{C}} \def\sfD{\mathsf{D}} \def\sfE{\mathsf{E}} \def\sfSet{\mathsf{Set}} \def\Dn{\Downarrow} \def\nameof#1{\ulcorner#1\urcorner} % «title» (to ".title") {\setlength{\parindent}{0em} \footnotesize Notes on Emily Riehl's ``Categories in Context'' (2016): \url{http://www.math.jhu.edu/~eriehl/} \url{http://www.math.jhu.edu/~eriehl/context/} \url{http://www.math.jhu.edu/~eriehl/context.pdf} \ssk These notes are at: \url{http://anggtwu.net/LATEX/2020riehl.pdf} \ssk See: \url{http://anggtwu.net/LATEX/2020favorite-conventions.pdf} \url{http://anggtwu.net/math-b.html\#favorite-conventions} I wrote these notes mostly to test if the conventions above are good enough. } \newpage % (find-books "__cats/__cats.el" "riehl") % (find-riehlccpage (+ 18 36) "1.6. The art of the diagram chase") % (find-riehlccpage (+ 18 40) "equational reasoning") % (find-riehlccpage (+ 18 44) "1.7. The 2-category of categories") % (find-riehlcctext (+ 18 44) "1.7. The 2-category of categories") % (find-riehlccpage (+ 18 55) "2.2. The Yoneda lemma") % (find-riehlcctext (+ 18 55) "2.2. The Yoneda lemma") % (find-riehlccpage (+ 18 57) "Theorem 2.2.4 (Yoneda lemma)") % (find-riehlcctext (+ 18 57) "Theorem 2.2.4 (Yoneda lemma)") \section*{2.2. The Yoneda Lemma} % __ __ _ _ % | \/ | __ _| |_ _ __(_) ___ ___ ___ % | |\/| |/ _` | __| '__| |/ __/ _ \/ __| % | | | | (_| | |_| | | | (_| __/\__ \ % |_| |_|\__,_|\__|_| |_|\___\___||___/ % % «2.2.9._matrices» (to ".2.2.9._matrices") % (riep 2 "2.2.9._matrices") % (rie "2.2.9._matrices") \subsection*{2.2.9. Corollary: matrices} % (find-books "__cats/__cats.el" "riehl-matrices") % (find-riehlmatricespage) % (find-riehlccpage (+ 18 60) "Corollary 2.2.9. Every row operation") % (find-riehlcctext (+ 18 60) "Corollary 2.2.9. Every row operation") (Page 60) Corollary 2.2.9. Every row operation on matrices with n rows is defined by left multiplication by some $n×n$ matrix, namely the matrix obtained by performing the row operation on the identity matrix. \msk She gave a presentation about this in the Tutorial Day of the ACT2020: \url{http://www.math.jhu.edu/~eriehl/matrices.pdf} \url{https://www.youtube.com/watch?v=SsgEvrDFJsM} \def\Vect{\mathbf{Vect}} \def\Mat {\mathsf{Mat}} \def\Objs{\mathsf{Objs}} \def\matrices#1#2{\{\,\text{$#1×#2$ -matrices}\,\}} \msk Let $\Mat$ be the category that has: $\Objs(\Mat) = \{1,2,3,\ldots\}$, $\Hom_\Mat(k,m) = \Mat(k,m) = \matrices m k$, and composition like this: % %D diagram yoneda-matrices-comp %D 2Dx 100 +20 +20 +20 +20 +20 %D 2D 100 A0 A1 A2 B0 B1 B2 %D 2D %D 2D +20 %D 2D %D ren A0 A1 A2 ==> n m k %D ren B0 B1 B2 ==> 4 3 2 %D %D (( A0 A1 <- .plabel= a A %D A1 A2 <- .plabel= a B %D A0 A2 <- .slide= -10pt .plabel= b A∘B=AB %D %D B0 B1 <- .plabel= a \psm{·&·&·\\·&·&·\\·&·&·\\·&·&·\\} %D B1 B2 <- .plabel= a \psm{·&·\\·&·\\·&·\\} %D B0 B2 <- .slide= -10pt .plabel= b \psm{·&·\\·&·\\·&·\\·&·\\} %D %D )) %D enddiagram %D $\pu \cdiag{yoneda-matrices-comp} $ The main diagram is: % %D diagram yoneda-matrices %D 2Dx 100 +60 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 %D 2D +15 B0 B1 %D 2D +15 C1 C2 %D 2D +20 C3 %D 2D %D ren A1 ==> 1 %D ren A2 A3 ==> k \Mat(j,k) %D ren A4 A5 ==> n \Mat(j,n) %D ren B0 B1 ==> \Mat \sfSet %D ren C1 C2 ==> h_k=\Mat(k,-) \sfSet(1,\Mat(j,-)) %D ren C3 ==> h_j=\Mat(j,-) %D %D (( A1 A3 -> .plabel= r \nameof{α_k(I_k)} %D A2 A3 |-> %D A2 A4 -> # .plabel= l ϕ %D A3 A5 -> # .plabel= r · %D A4 A5 |-> %D # A1 A5 -> .slide= 35pt .plabel= r · %D A2 A5 harrownodes nil 20 nil |-> %D B0 B1 -> .plabel= a \Mat(j,-) %D C1 C2 -> # .plabel= b T %D C1 C3 -> .plabel= b α %D C2 C3 <-> %D )) %D enddiagram %D $$\pu \diag{yoneda-matrices} $$ \newpage % «2.3._univ-props-and-elts» (to ".2.3._univ-props-and-elts") % (riep 1 "2.3._univ-props-and-elts") % (rie "2.3._univ-props-and-elts") % (find-riehlccpage (+ 18 62) "2.3. Universal properties and universal elements") % (find-riehlcctext (+ 18 62) "2.3. Universal properties and universal elements") \section*{2.3. Universal properties and universal elements} (Page 62): % «2.3.4._example-Zx» (to ".2.3.4._example-Zx") % (riep 1 "2.3.4._example-Zx") % (rie "2.3.4._example-Zx") % (find-riehlccpage (+ 18 63) "Example 2.3.4." "Z[x]") % (find-riehlcctext (+ 18 63) "Example 2.3.4." "Z[x]") (Page 63): Example 2.3.4. Recall from Example 2.1.5(iv) that the forgetful functor $U: 𝐬{Ring}→𝐬{Set}$ is represented by the ring $\Z[x]$. The universal element, which defines the natural isomorphism % $$𝐬{Ring}(\Z[x],R)≅UR,$$ % is the element $x∈\Z[x]$. As in the proof of the Yoneda lemma, the bijection (2.3.5) is implemented by evaluating a ring homomorphism $φ: \Z[x] → R$ at the element $x∈Z[x]$ to obtain an element $φ(x)∈R$. % %D diagram 2.3.4._Z[x] %D 2Dx 100 +55 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 %D 2D +15 B0 B1 %D 2D +15 C1 C2 %D 2D +20 C3 %D 2D %D ren A1 ==> 1 %D ren A2 A3 ==> \Z[x] U(\Z[x]) %D ren A4 A5 ==> R UR %D ren B0 B1 ==> 𝐬{Ring} 𝐬{Set} %D ren C1 C2 ==> 𝐬{Ring}(\Z[x],-) 𝐬{Set}(1,U-) %D ren C3 ==> U %D %D (( A1 A3 -> .plabel= r \sm{\nameof{x}\\\text{univ}} %D A2 A3 |-> %D A2 A4 -> .plabel= l φ %D A3 A5 -> %D A4 A5 |-> %D A1 A5 -> .slide= 20pt .plabel= r \nameof{φ(x)} %D B0 B1 |-> .plabel= a U %D C1 C2 <-> %D C1 C3 <-> %D C2 C3 <-> %D %D )) %D enddiagram %D $$\pu \diag{2.3.4._Z[x]} $$ % «2.3.7._example-bilin» (to ".2.3.7._example-bilin") % (riep 1 "2.3.7._example-bilin") % (rie "2.3.7._example-bilin") % (find-riehlccpage (+ 18 63) "Example 2.3.7.") % (find-riehlcctext (+ 18 63) "Example 2.3.7.") Example 2.3.7. % %D diagram 2.3.4._Bilin %D 2Dx 100 +70 %D 2D 100 A1 %D 2D +20 A2 A3 %D 2D +20 A4 A5 %D 2D +15 B0 B1 %D 2D +15 C1 C2 %D 2D +20 C3 %D 2D %D ren A1 ==> 1 %D ren A2 A3 ==> V⊗_{\k}W 𝐬{Bilin}(V,W;V⊗_{\k}W) %D ren A4 A5 ==> U 𝐬{Bilin}(V,W;U) %D ren B0 B1 ==> 𝐬{Vect}_\k 𝐬{Set} %D ren C1 C2 ==> 𝐬{Vect}(V⊗_{\k}W,-) 𝐬{Set}(1,𝐬{Bilin}(V,W;-)) %D ren C3 ==> 𝐬{Bilin}(V,W;-) %D %D (( A1 A3 -> .plabel= r \sm{\nameof{⊗}\\\text{univ}} %D A2 A3 |-> %D A2 A4 -> .plabel= l \ovl{f} %D A3 A5 -> %D A4 A5 |-> %D A1 A5 -> .slide= 55pt .plabel= r \nameof{f} %D B0 B1 |-> .plabel= a U %D C1 C2 <-> %D C1 C3 <-> %D C2 C3 <-> %D %D )) %D enddiagram %D $$\pu \def\k{k} \diag{2.3.4._Bilin} $$ % ____ _ _ _____ _ _ % |___ \ | || | | ____| | |_ ___ % __) | | || |_ | _| | | __/ __| % / __/ _ |__ _| | |___| | |_\__ \ % |_____| (_) |_| |_____|_|\__|___/ % % «2.4._cat-of-elements» (to ".2.4._cat-of-elements") % (find-books "__cats/__cats.el" "riehl") % (find-riehlccpage (+ 18 66) "2.4. The category of elements") \section*{2.4 The category of elements} (Page 66): 2.4.1: Covariant: % %D diagram elts-covariant %D 2Dx 100 +20 +40 +25 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 C0 C1 %D 2D %D 2D +20 A4 A5 C2 C3 %D 2D %D 2D +20 B0 B1 D0 D1 %D 2D %D ren A1 A2 A3 A4 A5 B0 B1 ==> 1 c Fc c' Fc' \sfC \sfSet %D ren C0 C1 C2 C3 D0 D1 ==> (c,x) c (c',x') c' ∫F \sfC %D %D (( A1 A3 -> .plabel= r \nameof{x} %D A2 A3 |-> %D A2 A4 -> .plabel= l f %D A3 A5 -> .plabel= r Ff %D A4 A5 |-> %D A1 A5 -> .plabel= r \nameof{x'} .slide= 20pt %D B0 B1 -> .plabel= a F %D A2 A5 harrownodes nil 20 nil |-> %D %D C0 C1 |-> %D C0 C2 -> .plabel= l f %D C1 C3 -> .plabel= r f %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil |-> %D D0 D1 -> .plabel= a Π %D )) %D enddiagram %D $$\pu \diag{elts-covariant} $$ 2.4.2: Contravariant: % %D diagram elts-contravariant %D 2Dx 100 +20 +40 +25 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 C0 C1 %D 2D %D 2D +20 A4 A5 C2 C3 %D 2D %D 2D +20 B0 B1 D0 D1 %D 2D %D ren A1 A2 A3 A4 A5 B0 B1 ==> 1 c' Fc' c Fc \sfC^\op \sfSet %D ren C0 C1 C2 C3 D0 D1 ==> (c',x') c' (c,x) c ∫F \sfC %D %D (( A1 A3 -> .plabel= r \nameof{x'} %D A2 A3 |-> %D A2 A4 <- .plabel= l f %D A3 A5 -> .plabel= r Ff %D A4 A5 |-> %D A1 A5 -> .plabel= r \nameof{x} .slide= 20pt %D B0 B1 -> .plabel= a F %D A2 A5 harrownodes nil 20 nil |-> %D %D C0 C1 |-> %D C0 C2 <- .plabel= l f %D C1 C3 <- .plabel= r f %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil |-> %D D0 D1 -> .plabel= a Π %D )) %D enddiagram %D $$\pu \diag{elts-contravariant} $$ % _ _ _ _ _ _ _ % | || | / \ __| |(_)_ _ _ __ ___| |_(_) ___ _ __ ___ % | || |_ / _ \ / _` || | | | | '_ \ / __| __| |/ _ \| '_ \/ __| % |__ _| / ___ \ (_| || | |_| | | | | (__| |_| | (_) | | | \__ \ % |_| /_/ \_\__,_|/ |\__,_|_| |_|\___|\__|_|\___/|_| |_|___/ % |__/ % % «4._adjunctions» (to ".4._adjunctions") % (find-riehlccpage 134 "4.1. Adjoint functors") % (find-riehlcctext 134 "4.1. Adjoint functors") % (find-riehlccpage 134 "Definition 4.1.1 (adjunctions I)") % (find-riehlcctext 134 "Definition 4.1.1 (adjunctions I)") % (find-riehlccpage 140 "4.2. The unit and counit as universal arrows") % (find-riehlcctext 140 "4.2. The unit and counit as universal arrows") % (find-riehlccpage (+ 18 123) "Definition 4.2.5 (adjunction II)") % (find-riehlcctext (+ 18 123) "Definition 4.2.5 (adjunction II)") % (find-riehlccpage (+ 18 124) "fully-specified adjunction") % (find-riehlcctext (+ 18 124) "fully-specified adjunction") \section*{4. Adjunctions} % «4.5.2._RAPL» (to ".4.5.2._RAPL") % (riep 5 "4.5.2._RAPL") % (rie "4.5.2._RAPL") \subsection*{4.5.2. Right adjoints preserve limits} (Page 136): % (find-riehlccpage (+ 18 136) "Theorem 4.5.2 (RAPL)") % (find-riehlcctext (+ 18 136) "Theorem 4.5.2 (RAPL)") %D diagram RAPL-1 %D 2Dx 100 +40 +40 +40 %D 2D 100 A0 <--| A1 %D 2D +20 A2 |--> A3 %D 2D +10 A4 <--| A5 %D 2D +20 A6 A7' A7 %D 2D %D 2D +20 B0 <==> B1 %D 2D +30 B2 <==> B3 %D 2D %D ren A0 A1 ==> (LA\;LA) (A\;A) %D ren A2 A3 ==> (B_1\;B_2) (RB_1\;RB_2) %D ren A4 A5 ==> LA A %D ren A6 A7' A7 ==> B_1{×}B_2 R(B_1{×}B_2) RB_1{×}RB_2 %D ren B0 B1 ==> \catB^{••} \catA^{••} %D ren B2 B3 ==> \catB \catA %D %D (( A7' xy+= 5 0 %D %D # Horizontal arrows: %D A0 A1 <-| %D A2 A3 |-> %D A4 A5 <-| %D A6 A7' |-> %D B0 B1 <- sl^ .plabel= a L^{••} %D B0 B1 -> sl_ .plabel= b R^{••} %D B2 B3 <- sl^ .plabel= a L %D B2 B3 -> sl_ .plabel= b R %D %D # Vertical arrows: %D A0 A2 -> %D A1 A3 -> %D A4 A6 -> %D A5 A7 -> %D A5 A7' -> %D %D # Diagonal arrows: %D A0 A4 <-| %D A1 A5 <-| %D A2 A6 |-> %D A3 A7 |-> %D B0 B2 <- sl^ .plabel= a Δ %D B0 B2 -> sl_ .plabel= b \lim %D B1 B3 <- sl^ .plabel= a Δ %D B1 B3 -> sl_ .plabel= b \lim %D )) %D enddiagram %D $$\pu \diag{RAPL-1} $$ %D diagram RAPL-2 %D 2Dx 100 +40 +40 +40 %D 2D 100 A0 <--| A1 %D 2D +20 A2 |--> A3 %D 2D +10 A4 <--| A5 %D 2D +20 A6 A7' A7 %D 2D %D 2D +20 B0 <==> B1 %D 2D +30 B2 <==> B3 %D 2D %D ren A0 A1 ==> ΔLA=L^\catIΔA ΔA %D ren A2 A3 ==> D R^{\catI}D %D ren A4 A5 ==> LA A %D ren A6 A7' A7 ==> \lim\,D R(\lim\,D) \lim(R^\catI\,D) %D ren B0 B1 ==> \catB^\catI \catA^\catI %D ren B2 B3 ==> \catB \catA %D %D (( A7' xy+= 5 0 %D %D # Horizontal arrows: %D A0 A1 <-| %D A2 A3 |-> %D A4 A5 <-| %D A6 A7' |-> %D B0 B1 <- sl^ .plabel= a L^\catI %D B0 B1 -> sl_ .plabel= b R^\catI %D B2 B3 <- sl^ .plabel= a L %D B2 B3 -> sl_ .plabel= b R %D %D # Vertical arrows: %D A0 A2 -> %D A1 A3 -> %D A4 A6 -> %D A5 A7 -> %D A5 A7' -> %D %D # Diagonal arrows: %D A0 A4 <-| %D A1 A5 <-| %D A2 A6 |-> %D A3 A7 |-> %D B0 B2 <- sl^ .plabel= a Δ %D B0 B2 -> sl_ .plabel= b \lim %D B1 B3 <- sl^ .plabel= a Δ %D B1 B3 -> sl_ .plabel= b \lim %D )) %D enddiagram %D $$\pu \diag{RAPL-2} $$ \newpage % __ _ _ __ % / /_ / | | |/ /__ _ _ __ % | '_ \ | | | ' // _` | '_ \ % | (_) | _ | | | . \ (_| | | | | % \___/ (_) |_| |_|\_\__,_|_| |_| % % «6.1._kan-extensions» (to ".6.1._kan-extensions") % (riep 5 "6.1._kan-extensions") % (rie "6.1._kan-extensions") \section*{6.1. Kan Extensions} (Page 190): Definition 6.1.1 (second half). Given functors $F$ and $K$ a right kan extension of $F$ along $K$ is a pair $(R,ε)$ such that $∀G.∀δ.∃!β. \; δ=ε·βK$. Lower half: internal view --- $δ=ε·βK$ becomes $∀c. \; δc=εc∘βKc$. % From [PH1]: % % Look at Figure \ref{fig:internal-external}; let's name its % subdiagrams as $A$, $B$, and $C$, like this: $\sm{A \; B \\ C}$. % Each one of $A$, $B$, $C$ has an {\sl internal view} above and an % {\sl external view} below. % (find-riehlccpage (+ 18 44) "1.7. The 2-category of categories") % (find-riehlcctext (+ 18 44) "1.7. The 2-category of categories") % (find-riehlccpage (+ 18 46) "whiskering") % (find-riehlcctext (+ 18 46) "whiskering") % (find-riehlccpage (+ 18 190) "6.1. Kan extensions") % (find-riehlcctext (+ 18 190) "6.1. Kan extensions") %D diagram Ran-cells %D 2Dx 100 +30 +30 +20 +30 +30 +20 +30 +30 %D 2D 100 A1 B1 C1 %D 2D / \ / \ / \\ %D 2D +30 A0 ---- A2 B0 ---- B2 C0 ---- C2 %D 2D %D 2D +20 D1 E1 F1 %D 2D +10 / \ / E2 / F2 %D 2D +15 / D3 / | / F3 %D 2D +15 D0 ---- D4 E0 ---- E4 F0 ---- F4 %D 2D %D ren A0 A1 A2 ==> \sfC \sfD \sfE %D ren B0 B1 B2 ==> \sfC \sfD \sfE %D ren C0 C1 C2 ==> \sfC \sfD \sfE %D ren D0 D1 D3 D4 ==> c Kc RKc Fc %D ren E0 E1 E2 E4 ==> c Kc GKc Fc %D ren F0 F1 F2 F3 F4 ==> c Kc GKc RKc Fc %D %D (( A0 A1 -> .plabel= a K %D A1 A2 -> .curve= _10pt .plabel= a R %D A0 A2 -> .plabel= b F %D A0 A2 midpoint relplace -5 -10 \Dnε %D %D B0 B1 -> .plabel= a K %D B1 B2 -> .curve= ^20pt .plabel= a ∀G %D B0 B2 -> .plabel= b F %D B0 B2 midpoint relplace 10 -15 \Dn∀δ %D %D C0 C1 -> .plabel= a K %D C1 C2 -> .curve= _10pt .plabel= m R %D C1 C2 -> .curve= ^20pt .plabel= a G %D C0 C2 -> .plabel= b F %D C1 C2 midpoint relplace 5 0 \Dn∃!β %D C0 C2 midpoint relplace -5 -10 \Dnε %D %D D0 D1 |-> %D D1 D3 |-> .curve= _10pt %D D0 D4 |-> %D D3 D4 -> .plabel= r εc %D %D E0 E1 |-> %D E1 E2 |-> .curve= ^10pt %D E0 E4 |-> %D E2 E4 -> .plabel= r δc %D %D F0 F1 |-> %D F1 F2 |-> .curve= ^10pt %D F1 F3 |-> .curve= _10pt %D F0 F4 |-> %D F2 F3 -> .plabel= r βKc %D F3 F4 -> .plabel= r εc %D F2 F4 -> .slide= 25pt .plabel= r δc %D %D )) %D enddiagram %D $$\pu \def\Dn{{\Downarrow}} \diag{Ran-cells} $$ % (find-riehlccpage (+ 18 192) "Proposition 6.1.5") % (find-riehlcctext (+ 18 192) "Proposition 6.1.5") (Page 192): Proposition 6.1.5 (right Kan only). Fix $K$ and suppose that we have an operation $F ↦ (\Ran_KF,ε)$ that returns right Kan extensions. We can use that to build an adjunction $K^*⊣\Ran_K$, where $K^*$ is pre-composition with $K$. %D diagram Ran-adjunction %D 2Dx 100 +25 +40 +20 +25 +20 +20 %D 2D 100 A0 - A1 B0 C0 - C1 %D 2D | | | | | %D 2D +20 A2 - A3 B1 C2 - C3 %D 2D | %D 2D +20 A4 D0 - D1 %D 2D %D 2D +20 E0 - E1 %D 2D %D ren A0 A1 A2 A3 A4 ==> K^*G ∀G K^*R R F %D ren B0 B1 ==> K^*R F %D ren C0 C1 C2 C3 ==> K^*G G F \Ran_KF %D ren D0 D1 ==> \sfE^\sfC \sfE^\sfD %D ren E0 E1 ==> \sfC \sfD %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l K^*β %D A1 A3 -> .plabel= r ∃!β %D A2 A3 <-| %D A2 A4 -> .plabel= l ε %D A0 A4 -> .slide= -25pt .plabel= l ∀δ %D %D B0 B1 -> .plabel= l ε %D %D C0 C1 <-| %D C0 C2 -> .plabel= l δ %D C1 C3 -> .plabel= r β %D C2 C3 |-> %D C3 relplace 20 0 =R %D %D D0 D1 <- sl^ .plabel= a K^* %D D0 D1 -> sl_ .plabel= b \Ran_K %D E0 E1 -> .plabel= a K %D )) %D enddiagram %D $$\pu \diag{Ran-adjunction} $$ % (find-riehlccpage (+ 18 190) "6.1. Kan extensions") % (find-riehlcctext (+ 18 190) "6.1. Kan extensions") % % Definition 6.1.1 (second half). Given functors $F:\sfC → \sfE$, % $K:\sfC→\sfD$, a right Kan extension of $F$ along $K$ is a functor % $\Ran_K F: \sfD → \sfE$ together with a natural transformation $ε: % \Ran_K F · K ⇒ F$ such that for any $(G: \sfD → \sfE, δ: GK ⇒ F)$, % factors uniquely through as illustrated. % (find-riehlccpage (+ 18 192) "Proposition 6.1.5") % (find-riehlcctext (+ 18 192) "Proposition 6.1.5") % % Proposition 6.1.5. If, for fixed $K: \sfC → \sfD$ and $E$, the right % Kan extensions of any functor $F: \sfC → \sfE$ along $K$ exist, then % it defines right adjoints to the pre-composition functor $K^* : % \sfE^\sfD → \sfE^\sfC$. \newpage \def\pdiag#1{\left(\diag{#1}\right)} \def\Po#1#2{\psm{ & #1 \\ #2 & F#2}} \def\po#1#2{\phantom{\Po#1#2}} \section*{6.2 A formula for Kan extensions} % (find-riehlccpage (+ 18 193) "6.2. A formula for Kan extensions") % (find-riehlcctext (+ 18 193) "6.2. A formula for Kan extensions") % (find-riehlccpage (+ 18 194) "Theorem 6.2.1.") % (find-riehlcctext (+ 18 194) "Theorem 6.2.1.") Riehl's formula for $\Ran_K F (d)$ is: $\Ran_K F(d) = \lim(d↓K \ton{Π_d} \sfC \ton{F} \sfE)$ I'll change the notation by $\bsm{ \sfC := \catA \\ \sfD := \catB \\ \sfE := \Set \\ K := F \\ F := H \\ d := B \\ } $ $F_*H(B) = \Ran_F H(B) = \lim(B↓F \ton{π_o} \catA \ton{F} \Set)$ %D diagram A %D 2Dx 100 +15 %D 2D 100 A1 A2 %D 2D +15 A3 A4 %D 2D +15 A5 A6 %D 2D %D ren A1 A2 A3 A4 A5 A6 ==> · 2 · · 5 6 %D %D (( A2 A6 -> A5 A6 -> %D %D )) %D enddiagram %D %D diagram B %D 2Dx 100 +15 %D 2D 100 A1 A2 %D 2D +15 A3 A4 %D 2D +15 A5 A6 %D 2D %D ren A1 A2 A3 A4 A5 A6 ==> 1' 2' 3' 4' 5' 6' %D %D (( A1 A2 -> A1 A3 -> A2 A4 -> %D A3 A4 -> A3 A5 -> A4 A6 -> A5 A6 -> %D )) %D enddiagram %D $$\pu F:\catA→\catB \qquad \text{is} \qquad \pdiag{A} \diagxyto/->/<200>^F \pdiag{B} $$ %D diagram ?? %D 2Dx 100 +30 %D 2D 100 A1 A2 %D 2D +30 A3 A4 %D 2D +30 A5 A6 %D 2D %D ren A1 A2 A3 A4 A5 A6 ==> · \Po26 · · \Po56 \Po66 %D %D (( A2 A6 -> A5 A6 -> %D )) %D enddiagram %D $$\pu \pdiag{??} $$ \newpage \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020riehl veryclean make -f 2019.mk STEM=2020riehl pdf % Local Variables: % coding: utf-8-unix % ee-tla: "rie" % End: