Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020maclane-moerdijk.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020maclane-moerdijk.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2020maclane-moerdijk.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2020maclane-moerdijk.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020maclane-moerdijk.pdf")) % (defun e () (interactive) (find-LATEX "2020maclane-moerdijk.tex")) % (defun u () (interactive) (find-latex-upload-links "2020maclane-moerdijk")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2020maclane-moerdijk.pdf")) % (code-eec-LATEX "2020maclane-moerdijk") % (find-pdf-page "~/LATEX/2020maclane-moerdijk.pdf") % (find-sh0 "cp -v ~/LATEX/2020maclane-moerdijk.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020maclane-moerdijk.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020maclane-moerdijk.pdf % file:///tmp/2020maclane-moerdijk.pdf % file:///tmp/pen/2020maclane-moerdijk.pdf % http://angg.twu.net/LATEX/2020maclane-moerdijk.pdf % (find-LATEX "2019.mk") % «.title» (to "title") % «.Set-C-op» (to "Set-C-op") % «.yoneda» (to "yoneda") % «.Omega-in-presheaf» (to "Omega-in-presheaf") % «.sieve-on-C» (to "sieve-on-C") % «.cat-of-elements» (to "cat-of-elements") % «.sieves-and-sheaves» (to "sieves-and-sheaves") % «.O-Bottle» (to "O-Bottle") % «.OO-House» (to "OO-House") % «.sieves» (to "sieves") % «.top-sheaves-in-my-notation» (to "top-sheaves-in-my-notation") % «.sheaves-on-a-site» (to "sheaves-on-a-site") % «.LT-subsumes-groth» (to "LT-subsumes-groth") % «.localic-topoi» (to "localic-topoi") % «.spaces-from-locales» (to "spaces-from-locales") % «.5._localic_topoi» (to "5._localic_topoi") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{indentfirst} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") \input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % \usepackage[backend=biber, style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-u.bib} % (find-LATEX "catsem-u.bib") %\addbibresource{2019notes-yoneda.bib} % (find-LATEX "2019notes-yoneda.bib") \addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \long\def\ColorRed #1{{\color{Red1}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorViolet#1{{\color{Violet!50!black}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreen4}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} \long\def\ColorGray #1{{\color{black!30!white}#1}} %\def\Sets {\mathbf{Sets}} \def\Nat {\text{Nat}} \def\phop {{}^{\phantom{\op}}} \def\Cop {{\catC^\op}} \def\SetsCop {\Sets^{\catC^\op}} \def\hatC {{\widehat\catC}} \def\OXop {\Opens(X)^\op} \def\SetsOXop{\Sets^{\Opens(X)^\op}} \def\univ {\mathsf{univ}} \def\Spaces {\mathbf{Spaces}} \def\Locales {\mathbf{Locales}} \def\Frames {\mathbf{Frames}} \def\Top {\mathbf{Top}} \def\Bund {\mathbf{Bund}} \def\Loc {\mathrm{Loc}} \def\Ker {\operatorname{Ker}} \def\Pt {\operatorname{pt}} \def\Sh {\operatorname{Sh}} \def\PSh {\operatorname{PSh}} \def\acz {\setlength{\arraycolsep}{0pt}} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % «title» (to ".title") {\setlength{\parindent}{0em} \footnotesize Notes on MacLane and Moerdijk's ``Sheaves in Geometry and Logic - A First Introduction to Topos Theory'' (1994) \url{https://www.springer.com/gp/book/9780387977102} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020maclane-moerdijk.pdf} \ssk See: \url{http://angg.twu.net/LATEX/2020favorite-conventions.pdf} \url{http://angg.twu.net/math-b.html\#favorite-conventions} I wrote these notes mostly to test if the conventions above are good enough. } \section*{1. Categories of functors} % ____ _ /\ ____ /\ % / ___| ___| |_ |/\| / ___| |/\| ___ _ __ % \___ \ / _ \ __| | | / _ \| '_ \ % ___) | __/ |_ | |___ | (_) | |_) | % |____/ \___|\__| \____| \___/| .__/ % |_| % % «Set-C-op» (to ".Set-C-op") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 25) "(viii)") (Page 25): (viii) $\Set^{\catC^\op}$, where... %D diagram p25-a %D 2Dx 100 +25 +20 +25 +25 +15 +25 %D 2D 100 A0 A1 C0 C1 E0 F0 F1 %D 2D %D 2D +20 A2 A3 C2 C3 E1 F2 F3 %D 2D %D 2D +12 B0 D0 %D 2D +8 B1 B2 D1 D2 G0 G1 %D 2D %D ren A0 A1 A2 A3 B0 B1 B2 ==> C PC D PD \catC \phop\catC^\op \Set %D ren C0 C1 C2 C3 D0 D1 D2 ==> C P'C D P'D \catC \phop\catC^\op \Set %D ren E0 E1 F0 F1 F2 F3 G0 G1 ==> C D PC P'C PD P'D P P' %D %D (( A0 A1 |-> %D A0 A2 <- .plabel= l f %D A1 A3 -> .plabel= r Pf %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D B0 place %D B1 B2 -> .plabel= a P %D %D C0 C1 |-> %D C0 C2 <- .plabel= l f %D C1 C3 -> .plabel= r P'f %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil |-> %D D0 place %D D1 D2 -> .plabel= a P' %D %D E0 E1 <- .plabel= l f %D F0 F1 -> .plabel= a θ_C %D F0 F2 -> .plabel= l Pf %D F1 F3 -> .plabel= r P'f %D F2 F3 -> .plabel= a θ_D %D G0 G1 -> .plabel= a θ %D )) %D enddiagram %D $$\pu \diag{p25-a} $$ \bsk %D diagram p25-b %D 2Dx 100 +25 +25 +40 %D 2D 100 A0 A1 C0 %D 2D %D 2D +20 A2 A3 C2 C3 %D 2D %D 2D +20 A4 A5 C4 C5 %D 2D %D 2D +12 B0 %D 2D +8 B1 B2 %D 2D %D ren A0 A1 A2 A3 A4 A5 ==> C PC D PD E PE %D ren B0 B1 B2 ==> \catC \phop\catC^\op \Set %D ren C0 C2 C4 ==> x x·f (x·f)·g %D ren C3 C5 ==> =x|f =x·(f∘g) %D %D (( A0 A1 |-> %D A0 A2 <- .plabel= l f %D A1 A3 -> .plabel= r Pf %D A0 A3 harrownodes nil 20 nil |-> %D A2 A3 |-> %D A2 A4 <- .plabel= l g %D A3 A5 -> .plabel= r Pg %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D B0 place %D B1 B2 -> .plabel= a P %D %D C0 C2 |-> C2 C4 |-> %D C3 place C5 place %D )) %D enddiagram %D $$\pu \diag{p25-b} $$ \newpage % __ __ _ % \ \ / /__ _ __ ___ __| | __ _ % \ V / _ \| '_ \ / _ \/ _` |/ _` | % | | (_) | | | | __/ (_| | (_| | % |_|\___/|_| |_|\___|\__,_|\__,_| % % «yoneda» (to ".yoneda") % (mmop 3 "yoneda") % (mmoa "yoneda") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 26) "Each object C of C gives rise") (Page 26): Each object $C$ of $\catC$ gives rise to a presheaf $𝐛y(C)$ on $\catC$... %D diagram p26-a %D 2Dx 100 +30 +40 +35 +20 +20 %D 2D 100 A0 A1 C0 D0 E0 E1 %D 2D %D 2D +20 A2 A3 C1 D1 E2 %D 2D %D 2D +12 B0 %D 2D +8 B1 B2 %D 2D %D ren A0 A1 A2 A3 ==> D 𝐛y(C)(D) D' 𝐛y(C)(D') %D ren B0 B1 B2 ==> \catC \phop\catC^\op \Set %D ren C0 C1 ==> =\Hom_\catC(D,C) =\Hom_\catC(D',C) %D ren D0 D1 ==> u u∘α %D ren E0 E1 E2 ==> D C D' %D %D (( A0 A1 |-> %D A0 A2 <- .plabel= l α %D A1 A3 -> .plabel= r 𝐛y(C)(α) %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D B0 place %D B1 B2 -> .plabel= a 𝐛y(C) %D %D C0 C1 -> .plabel= r (∘α) %D D0 D1 |-> %D E0 E1 -> .plabel= a u %D E0 E2 <- .plabel= l α %D E1 E2 <- .plabel= r u∘α %D )) %D enddiagram %D $$\pu \diag{p26-a} $$ %D diagram p26-b %D 2Dx 100 +25 +35 +50 +35 +20 +20 %D 2D 100 A0 A1 C0 D0 E0 F0 F1 %D 2D %D 2D +20 A2 A3 C1 D1 E1 F2 %D 2D %D 2D +12 B0 %D 2D +8 B1 B2 %D 2D %D ren A0 A1 A2 A3 ==> C_1 𝐛y(C_1) C_2 𝐛y(C_2) %D ren B0 B1 B2 ==> \catC \catC \Set^{\catC^\op} %D ren C0 C1 ==> =\Hom_\catC(-,C_1) =\Hom_\catC(-,C_2) %D ren D0 D1 ==> \Hom_\catC(D,C_1) \Hom_\catC(D,C_2) %D ren E0 E1 ==> v f∘v %D ren F0 F1 F2 ==> D C_1 C_2 %D %D (( A0 A1 |-> %D A0 A2 -> .plabel= l f %D A1 A3 -> .plabel= r 𝐛y(f) %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D B0 place %D B1 B2 -> .plabel= a 𝐛y %D C0 C1 -> .plabel= r (f∘) %D D0 D1 -> .plabel= r (f∘) %D E0 E1 |-> %D F0 F1 -> .plabel= a v %D F1 F2 -> .plabel= r f %D F0 F2 -> .plabel= l f∘v %D )) %D enddiagram %D $$\pu \diag{p26-b} $$ % %D diagram p26-yoneda %D 2Dx 100 +45 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +20 A4 A5 %D 2D %D 2D +20 B0 B1 %D 2D %D 2D +15 C0 C1 %D 2D %D 2D +20 C2 %D 2D %D 2D +20 %D 2D %D ren A1 A2 A3 A4 A5 ==> 1 C PC D PD %D ren B0 B1 ==> \phop\catC^\op \Set %D ren C0 C1 C2 ==> \Hom_\catC(-,C) \Set(1,P-) P %D %D (( A1 A3 -> .plabel= r \sm{\nameof{θ_α}=\\\nameof{α_C(1_C)}} %D A2 A3 |-> %D A2 A4 <- %D A3 A5 -> %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D B0 relplace 0 -8 \catC %D B0 B1 -> .plabel= a P %D C0 C1 -> %D C1 C2 <-> %D C0 C2 -> .plabel= b α %D C0 relplace -35 0 𝐛y(C)= %D )) %D enddiagram %D $$\pu \diag{p26-yoneda} $$ \newpage (Page 37): % «Omega-in-presheaf» (to ".Omega-in-presheaf") % (mmop 3 "Omega-in-presheaf") % (mmoa "Omega-in-presheaf") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 37) "For an arbitrary presheaf category hatC") For an arbitrary presheaf category $\hatC = \SetsCop$, if there is a subobject classifier $Ω$, it must, in particular, classify the subobjects of each representable presheaf $𝐛yC = \Hom_\catC(-,C): \Cop → \Sets$. Therefore, % $$\begin{array}{rcl} \Sub_\hatC(\Hom_\catC(-,C)) & ≅ & \Hom_\hatC(\Hom_\catC(-,C),Ω) \\ & ≅ & \Nat(\Hom_\catC(-,C),Ω) \\ \end{array} $$ % By the Yoneda Lemma [see \S1(6) above], the set on the right is (up to isomorphism) $Ω(C)$. Thus the subobject classifier $Ω$, if it exists, must be the functor $Ω: \Cop → \Sets$ with object function % $$\begin{array}{rcl} Ω(C) & = & \Sub_\hatC(\Hom_\catC(-,C)) \\ & = & \setofst{S}{S \text{ is a subfunctor of }\Hom_\catC(-,C)}, \\ \end{array} $$ % and with a suitable mapping function. %D diagram p37-1 %D 2Dx 100 +50 +50 +55 %D 2D 100 A1 D1 %D 2D %D 2D +20 A2 A3 D2 D3 %D 2D %D 2D +20 A4 A5 D4 D5 %D 2D %D 2D +20 B0 B1 E0 E1 %D 2D %D 2D +15 C0 C1 F0 F1 %D 2D %D 2D +20 C2 F2 %D 2D %D ren A1 A2 A3 A4 A5 ==> 1 C Ω(C) D Ω(D) %D ren B0 B1 C0 C1 C2 ==> \phop\Cop \Sets \Hom_\catC(-,C) \Set(1,Ω(-)) Ω(-)=Ω %D ren D1 D2 D3 D4 D5 ==> 1 Ω \Sub(Ω) X \Sub(X) %D ren E0 E1 F0 F1 F2 ==> \phop\hatC^\op \Sets \Hom_\hatC(-,Ω) \Sets(1,\Sub(-)) \Sub(-) %D %D (( A1 A3 -> %D A2 A3 |-> %D A2 A4 <- %D A3 A5 -> %D A2 A5 harrownodes nil 20 nil |-> %D A4 A5 |-> %D B0 B1 -> .plabel= a Ω %D C0 C1 -> %D C1 C2 <-> %D C0 C2 -> %D B0 relplace 0 -8 \catC %D C0 relplace -30 0 𝐛yC= %D )) %D (( D1 D3 -> .plabel= r \sm{\nameof{⊤}\\(\univ)} %D D2 D3 |-> %D D2 D4 <- %D D3 D5 -> %D D2 D5 harrownodes nil 20 nil |-> %D D4 D5 |-> %D E0 E1 -> .plabel= a \Sub %D F0 F1 <-> %D F1 F2 <-> %D F0 F2 <-> %D E0 relplace 0 -8 \hatC %D )) %D enddiagram %D $$\pu \diag{p37-1} $$ \bsk $$\begin{array}{rcl} Ω(C) & ≅ & \Sets(1,Ω(C)) \\ & ≅ & \Hom_\hatC(𝐛yC,Ω) \\ & ≅ & \Sub_\hatC(𝐛yC) \\ & = & \Sub_\hatC(\Hom_\catC(-,C)) \\ & = & \setofst{S}{S \text{ is a subfunctor of }\Hom_\catC(-,C)}, \\ \end{array} $$ \newpage % «sieve-on-C» (to ".sieve-on-C") % (mmop 4 "sieve-on-C") % (mmoa "sieve-on-C") % (find-maclanemoerdijkpage (+ 11 38) "Sieve on C =") (Page 38:) A sieve on $C$ is... \def\cod{\mathop{\text{cod}}} %\def\thinpsm #1{\setlength{\arraycolsep}{0pt}\psm{#1}} %\def\thinpsm #1{\setlength{\arraycolsep}{-10pt}\psm{#1}} \def\thinpsm #1{\psm{#1}} \def\thinpsmtwo #1#2#3{\thinpsm{  \\ #2 \!\!\! &↑ \\  }} \def\thinpsmthree#1#2#3#4#5{\thinpsm{  \\ #2 \!\!\! &↑ \\  \\ #4 \!\!\! &↑ \\  }} $$\begin{array}{rcl} t_C &=& \setofst{g}{\cod g = C} \\ &=& \setofst{ \thinpsmtwo{C}{g}{D} }{\cod g = C} \\ S \text{ is a sieve on } C &=& (S⊂t_C \text{ and } S \text{ is downward-closed} ) \\ &=& (S⊂t_C \text{ and } ∀\thinpsmthree{C}{g}{D}{h}{D'}. \pmat{g∈S \\ ↓ \\ g∘h∈S} ) \\ Ω(C) &=& \setofst{S⊂t_C}{S \text{ is a sieve on } C} \\ &=& \setofst{S⊂t_C}{S \text{ is downward-closed}} \\ \end{array} $$ %D diagram ?? %D 2Dx 100 +30 +30 +55 %D 2D 100 A0 |-> A1 C0 D0 %D 2D | | | | %D 2D | |-> | | | %D 2D | | | | %D 2D +25 A2 |-> A3 C1 D1 %D 2D %D 2D +13 B0' %D 2D +7 B0 --> B1 %D 2D %D ren A0 A1 A2 A3 ==> C Ω(C) B Ω(B) %D ren B0' B0 B1 ==> \catC \phantom{{}^\op}\catC^\op \Set %D ren C0 C1 ==> S g^*S=S·g %D ren D0 D1 ==> \inOmC \inOmB %D %D (( A0 A1 |-> %D A0 A2 <- .plabel= l g %D A1 A3 -> .plabel= r g^* %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil |-> %D %D B0' place %D B0 B1 -> .plabel= a Ω %D %D C0 C1 |-> %D D0 D1 |-> %D )) %D enddiagram %D $$\pu \def\inOmC{\setofst{ \thinpsmtwo{C}{g}{D} }{ g∈S }} \def\inOmB{\setofst{ \thinpsmtwo{B}{h}{D} }{ g∘h∈S }} \diag{??} $$ \newpage % «cat-of-elements» (to ".cat-of-elements") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 41) "Given P, the index category J") (Page 41): Given $P$, the index category $J$ which serves to prove the proposition is the so-called {\sl category of elements} of $P$, denoted by $∫_\catC P$ or, more briefly, $∫P$. Its objects are all pairs $(C,p)$ where $C$ is an object of $\catC$ and $p$ is an element $p∈P(C)$. Its morphisms $(C',p)→(C,p)$ are those morphisms $u:C'→C$ of $\catC$ for which $pu=p'$; in other words, $u$ must take the chosen element $p$ in $P(C)$ ``back'' into $p'$ in $P(C')$: % $$(C',p)→(C,p) \qquad \text{by $u:C'→C$ with $pu=p'$.}$$ These morphisms ar composed by composing the underlying arrows $u$ of $\catC$. This category has an evident projection functor % $$π_P: ∫_\catC P → \catC, \qquad (C,p) \mapsto C. $$ %D diagram ?? %D 2Dx 100 +30 +65 +35 +20 +20 +20 %D 2D 100 A1 %D 2D %D 2D +20 A2 A3 C0 C1 %D 2D %D 2D +20 A4 A5 C2 C3 %D 2D %D 2D +20 B0 B1 D0 D1 %D 2D %D ren A1 A2 A3 A4 A5 ==> 1 C P(C) C' P(C') %D ren B0 B1 ==> \phop\Cop \Sets %D ren C0 C1 C2 C3 ==> (C,p) C (C',p') C' %D ren D0 D1 ==> ∫_{\catC}P=∫P \catC %D %D (( A1 A3 -> .plabel= r \nameof{p} %D A2 A3 |-> %D A2 A4 <- .plabel= l u %D A3 A5 -> .plabel= r P(u) %D A4 A5 |-> %D A2 A5 harrownodes nil 20 nil |-> %D A1 A5 -> .slide= 25pt .plabel= r \sm{\nameof{pu}:=\\\nameof{P(u)(p)}\;=\\\nameof{p'}} %D B0 relplace 0 -8 \catC %D B0 B1 -> .plabel= a P %D )) %D (( C0 C1 |-> %D C0 C2 <- .plabel= l u %D C1 C3 <- .plabel= r u %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil |-> %D D0 D1 -> .plabel= a π_P %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage (Page 41): Colimits over the category of elements can be used to construct a pair of adjoint functors which will have many uses, as follows. {\bf Theorem 2.} {\sl If $A: \catC→\calE$ is a functor from a small category $\catC$ to a cocomplete category $\calE$, the functor $R$ from $\calE$ to presheaves given by % $$R(E): C \mapsto \Hom_\calE(A(C),E)$$ % has a left adjoint $L:\SetsCop → \calE$ defined for each presheaf $P$ in $\SetsCop$ as the colimit % $$L(P) = \Colim(∫ P \ton{π_P} \catC \ton{A} \calE).$$ } \bsk Here's how I found the type and a precise definition of $R_1$... (It's too big! How do other people do this?) % \def\HomE{\Hom_\calE} % %D diagram ?? %D 2Dx 100 +25 +40 +35 +40 +20 +30 %D 2D 100 A0 - A1 C0 - C1 E0 F0 - F1 %D 2D | | | | | | | %D 2D +20 A2 - A3 C2 - C3 E1 F2 - F3 %D 2D | %D 2D +20 A4 %D 2D +7 D0' G0' %D 2D +8 B0 - B1 D0 - D1 G0 - G1 %D 2D %D ren A0 A1 A2 A3 A4 ==> C A(C) C' A(C') E %D ren B0 B1 ==> \catC \calE %D ren D0' D0 D1 ==> \catC \phop\Cop \Sets %D ren C0 C1 C2 C3 ==> C \HomE(A(C),E) C' \HomE(A(C'),E) %D ren E0 E1 ==> f{∘}Ag f %D ren F0 F1 F2 F3 ==> C R(E)(C) C' R(E)(C') %D ren G0' G0 G1 ==> \catC \phop\Cop \Sets %D %D (( A0 A1 |-> %D A0 A2 -> .plabel= l g %D A1 A3 -> .plabel= r Ag %D A0 A3 harrownodes nil 20 nil |-> %D A2 A3 |-> %D A3 A4 -> .plabel= r f %D A1 A4 -> .slide= 20pt .plabel= r f∘Ag %D B0 B1 -> .plabel= a A %D %D C0 C1 |-> %D C0 C2 -> .plabel= l g %D C1 C3 <- .plabel= r (∘Ag) %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil |-> %D D0' place %D D0 D1 -> .plabel= a R(E) %D %D E0 E1 <-| %D %D F0 F1 |-> %D F0 F2 -> .plabel= l g %D F1 F3 <- .plabel= r (∘Ag) %D F2 F3 |-> %D F0 F3 harrownodes nil 20 nil |-> %D G0' place %D G0 G1 -> .plabel= a R(E) %D %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +30 +45 +30 +30 +30 +25 +40 +25 %D 2D 100 A0 B0 - B1 D0 - D1 E0 F0 - F1 %D 2D | | | | | | | | %D 2D +20 A1 B2 - B3 D2 - D3 E1 F2 - F3 %D 2D %D 2D +15 G0 - G1 H0 %D 2D | | | %D 2D +20 C0 - C1 G2 - G3 H1 %D 2D %D ren A0 A1 ==> C C' %D ren B0 B1 B2 B3 ==> \HomE(A(C),E) \HomE(A(C),E') \HomE(A(C'),E) \HomE(A(C'),E') %D ren C0 C1 ==> E E' %D ren D0 D1 D2 D3 ==> f{∘}AG h{∘}f{∘}Ag f h{∘}f %D ren E0 E1 ==> C C' %D ren F0 F1 F2 F3 ==> R(E)(C) R(E')(C) R(E)(C') R(E')(E') %D ren G0 G1 G2 G3 ==> R(E) R(E') E E' %D ren H0 H1 ==> \SetsCop \calE %D %D (( A0 A1 -> .plabel= a g %D B0 B1 -> .plabel= a (h∘) %D B0 B2 <- .plabel= l (∘Ag) %D B1 B3 <- .plabel= r (∘Ag) %D B2 B3 -> .plabel= a (h∘) %D C0 C1 -> .plabel= a h %D %D D0 D1 |-> %D D0 D2 <-| %D D1 D3 <-| %D D2 D3 |-> %D %D E0 E1 <- .plabel= l g %D %D F0 F1 -> .plabel= a (h∘) %D F0 F2 <- .plabel= l (∘Ag) %D F1 F3 <- .plabel= r (∘Ag) %D F2 F3 -> .plabel= a (h∘) %D %D G0 G1 -> .plabel= a Rh %D G0 G2 <-| %D G1 G3 <-| %D G2 G3 -> .plabel= b h %D G0 G3 varrownodes nil 15 nil <-| %D %D H0 H1 <- .plabel= r R %D )) %D enddiagram %D $$\pu \def\HomE{\Hom_\calE} \def\HomE{\calE} \diag{??} $$ \newpage % «sieves» (to ".sieves") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 24) "I. Categories of functors") % (find-maclanemoerdijkpage (+ 11 37) "a sieve on C") % http://angg.twu.net/MINICATS/sheaves_for_children__1_to_7.pdf \cite{MacLaneMoerdijk}, (Page 37): Given an object $C$ in the category $\catC$, a {\sl sieve} on $C$ is a set $S$ of arrows with codomain $C$ such that $f∈S$ implies $f∘h∈S$. A sieve $S$ can be seen as a subfunctor $S: \catC^\op → \Set$ of $\Hom(-,C): \catC^\op → \Set$ --- or, more explicitly, as a natural transformation $ι: S → \Hom(-,C)$ such that each $ι_A$ is an inclusion. % %D diagram sieve-on-C %D 2Dx 100 +20 +35 +20 +40 +35 +25 %D 2D 100 C %D 2D %D 2D +20 B A0 B0 B1 D0 D1 %D 2D %D 2D +20 A A1 B2 B3 D2 D3 %D 2D %D 2D +15 C0 C1 %D 2D %D ren A0 B0 B1 ==> B S(B) \Hom(B,C) %D ren A1 B2 B3 ==> A S(A) \Hom(A,C) %D ren C0 C1 ==> S(-) \Hom(-,C) %D ren D0 D1 ==> f f %D ren D2 D3 ==> f∘h f∘h %D %D (( B C -> .plabel= l f∈S %D A B -> .plabel= l h %D A C -> .plabel= r f∘h∈S %D C relplace -7 14 \dashrightarrow %D %D A0 A1 <- .plabel= l h %D B0 B1 `-> .plabel= a ι_B %D B0 B2 -> .plabel= l ∘h %D B1 B3 -> .plabel= r ∘h %D B2 B3 `-> .plabel= a ι_A %D C0 C1 `-> .plabel= a ι %D %D D0 D1 |-> D0 D2 |-> D1 D3 |-> D2 D3 |-> %D )) %D enddiagram %D $$\pu \diag{sieve-on-C} $$ \newpage % (find-maclanemoerdijkpage (+ 11 70) "a sieve S on U") (Page 70): A sieve $S$ on an object $U$ of $\Opens(X)$ is a subfunctor of $\Hom(-,U)$: % %D diagram sieve-on-a-topology %D 2Dx 100 +20 +35 +20 +40 +35 +25 %D 2D 100 X %D 2D %D 2D +20 U %D 2D %D 2D +20 V A0 B0 B1 D0 D1 %D 2D %D 2D +20 W A1 B2 B3 D2 D3 %D 2D %D 2D +15 C0 C1 %D 2D %D ren A0 B0 B1 ==> V S(V) \Hom(V,U) %D ren A1 B2 B3 ==> W S(W) \Hom(W,U) %D ren C0 C1 ==> S(-) \Hom(-,U) %D ren D0 D1 ==> ι_{V,U} ι_{V,U} %D ren D2 D3 ==> ι_{W,U} ι_{W,U} %D %D (( U X -> %D V U -> .plabel= l ι_{V,U}∈S %D W V -> .plabel= l ι_{W,V} %D W U -> .plabel= r ι_{W,U}∈S %D U relplace -7 14 \dashrightarrow %D %D A0 A1 <- .plabel= l ι_{W,V} %D B0 B1 `-> .plabel= a ι_V %D B0 B2 -> .plabel= l ∘ι_{W,V} %D B1 B3 -> .plabel= r ∘ι_{W,V} %D B2 B3 `-> .plabel= a ι_W %D C0 C1 `-> .plabel= a ι %D %D D0 D1 |-> D0 D2 |-> D1 D3 |-> D2 D3 |-> %D )) %D enddiagram %D $$\pu \diag{sieve-on-a-topology} $$ % «sieves-and-sheaves» (to ".sieves-and-sheaves") % (find-maclanemoerdijkpage (+ 11 69) "2. Sieves and Sheaves") % (find-maclanemoerdijkpage (+ 11 70) "a sieve S on U") \subsection*{2. Sieves and Sheaves} (From pages 69--70): \begin{quotation} On any space $X$, each open set $U$ determines a presheaf $\Hom(-,U)$ defined, for each open set $V$, by % $$\Hom(V,U) = \begin{cases} 1 & \text{if $V⊂U$,} \\ ∅ & \text{otherwise.} \\ \end{cases} $$ This presheaf is clearly a sheaf; it is the representable presheaf $𝐛y(U) = \Hom(-,U)$ on the category $\Opens(X)$. Recall from section I.4 that a {\sl sieve} $S$ on $U$ in this category is defined to be a subfunctor of $\Hom(-,U)$. Replacing the sieve $S$ by the set (call it $S$ again) of all those $V⊂U$ with $SV=1$, we may also describe a sieve on $U$ as a subset $S⊂\Opens(U)$ of objects such that $V_0 ⊂ V ∈ S$ implies $V_0 ∈ S$. Each indexed family $\setofst{V_i⊂U}{i∈I}$ of subsets of $U$ generates (= ``spans'') a sieve $S$ on $U$; namely, the set $S$ consisting of all those open $V$ with $V ⊆ V_i$ for some $i$; in particular, each $V_0 ⊂ U$ determines a {\sl principal sieve} $(V_0)$ on $U$, consisting of all $V$ with $V⊆V_0$. It is not difficult to see that a sieve $S$ on $U$ is principal iff the subfunctor $S$ of $𝐛y(U)$ is a subsheaf (Exercise 1). A sieve $S$ on $U$ is said to be a {\sl covering sieve} for $U$ when $U$ is the union of all the open sets $V$ in $S$. \end{quotation} Let's see how to visualize this. Definitions: if $V∈\Opens(X)$ then $↓V = \setofst{W∈\Opens(X)}{W⊆V}$; if $\calV⊆\Opens(X)$ then $↓\calV = \bigcup_{V∈\calV}(↓V)$. %L house = ".1.|2.3|4.5" %L mp = MixedPicture.new({def="dagHouse", meta="s", scale="5pt"}, z):zfunction(house):output() %L local mpl = mpnew({zdef="bottlelr", scale="12pt", meta=""}, "12321L") %L mpl:addlrs():output() \pu Let's use this topology from \cite[sections 12 and 13]{PH1}: $X = H = \dagHouse•••••$ (the ``house'' DAG), and % $$\Opens(X) \;\; = \;\; \zha{bottlelr} \;\; . $$ \newpage Writing 0 for $∅$, %R local y22, mid, lc, dnlc, y21 = %R 1/ 0 \, 1/ 0 \, 1/ 0 \, 1/ 0 \, 1/ 0 \ %R | 1 | | 0 | | 0 | | 0 | | 0 | %R | 1 1 | | 0 0 | | 0 0 | | 0 0 | | 1 0 | %R |1 1 1| |1 1 1| |1 1 0| |1 1 0| |1 1 0| %R | 1 1 | | 1 1 | | 0 0 | | 1 1 | | 1 1 | %R \ 1 / \ 1 / \ 0 / \ 1 / \ 1 / %R -- y22 :tozmp({zdef="y22", meta="s", size="6pt"}):addcells():output() %R y22 :tozmp({zdef="y22", scale="8pt"}):addcells():output() %R mid :tozmp({zdef="mid", scale="8pt"}):addcells():output() %R lc :tozmp({zdef="lc", scale="8pt"}):addcells():output() %R dnlc:tozmp({zdef="dnlc", scale="8pt"}):addcells():output() %R y21 :tozmp({zdef="y21", scale="8pt"}):addcells():output() %R y21 :tozmp({zdef="bott", scale="5pt"}):addbullets():output() \pu $𝐛y(22) = \Hom(-,22) = \zha{y22} \;\; ,$ This is also a sieve on 22: $S = \zha{dnlc} \;\; .$ Let $\calV = \setofst{V_i⊂U}{i∈I} = \zha{lc}$; then $\calV$ spans ${↓}\calV = \zha{dnlc}$. Note that this ${↓}\calV$ is not a principal sieve. We have $\bigcup ({↓}\calV) = 21 ≠ 22$, so ${↓}\calV$ is not a covering sieve on $U$. \bsk A subset $\calV⊆\Opens(X)$ is a sieve on $X$ if and only if $\calV = {↓}\calV$. Let's use the letters $\calA, \calB, \calC, \ldots$ to denote sieves on $X$. For every sieve $\calA$ on $X$ we have: $\calA$ is a covering sieve on $\bigcup\calA$, and ${↓}\bigcup\calA$ is a principal sieve (generated by $\bigcup\calA$). \bsk The operation $\calA \mapsto \calA^* := {↓}\bigcup\calA$ takes sieves to principal sieves. This operation obeys $\calA ⊆ \calA^* = \calA^{**}$. Fact (true but not obvious): $\calA^* ∩ \calB^* = (\calA ∩ \calB)^*$. \bsk Now reread \cite[sections 12 and 13]{PH1}. Remember that $\Opens(H) = \Opens(\dagHouse•••••) = \zha{bott}$. In \cite[p.20]{DaveyPriestley} the operation `$\Opens$' is defined in a different, but equivalent, way: if $X$ is an ordered set then $\Opens(X)$ is the set of the down-sets of $X$, ordered by inclusion. \newpage % «O-Bottle» (to ".O-Bottle") % «OO-House» (to ".OO-House") % (find-LATEX "2020sheaves.tex" "OO-House") With the definition in \cite{DaveyPriestley} it is easy to calculate $\Opens(\Opens(H))$ as a set of down-sets, and then interpret it as a topology. We have: % (find-books "__alg/__alg.el" "davey-priestley") % (find-daveypriestleypage (+ 10 24) "1.28 The ordered set O(P ) of down-sets") % (find-daveypriestleytext (+ 10 24) "1.28 The ordered set O(P ) of down-sets") % (find-LATEX "2017planar-has-defs.tex" "defzha-and-deftcg") % % Let B be the bottle ZHA. % Label its nodes like this: % % L % M % L R % L M R % L R % M % % I name the elements of O(B) by counting how many 1s % they have on Ls, Ms, and Rs. The topology O(B) is: % % 433 % \ % 333 % | % 323 % / \ % 322 223 % / \ / \ % 321 222 123 % \ / | \ / % 221 212 122 % | X X | % 211 121 112 % / \ | / \ % 210 111 012 % \ / \ / % 110 011 % \ / % 000 % % % (find-LATEX "2017planar-has-defs.tex" "defzha-and-deftcg") \def\Def#1#2{\expandafter\def\csname myDef#1\endcsname{#2}} \def\Get #1{\csname myDef#1\endcsname} \def\Run #1{\csname myDef#1\endcsname} \def\Defupperargs #1#2{\Def{21}{#1}\Def{12}{#2}} \def\Defmiddleargs#1#2#3{\Def{20}{#1}\Def{11}{#2}\Def{02}{#3}} \def\Deflowerargs #1#2{\Def{10}{#1}\Def{01}{#2}} \def\Defallargs#1.#2.#3.#4.#5.#6{ \Def{32}{#1} \Def{22}{#2} \Defupperargs#3 \Defmiddleargs#4 \Deflowerargs#5 \Def{00}{#6} } \def\Setbottle#1#2{\Def{#1}{\Defallargs#2}} \Setbottle{433}{1.1.11.111.11.1} \Setbottle{333}{0.1.11.111.11.1} \Setbottle{323}{0.0.11.111.11.1} \Setbottle{322}{0.0.10.111.11.1} \Setbottle{223}{0.0.01.111.11.1} \Setbottle{321}{0.0.10.110.11.1} \Setbottle{222}{0.0.00.111.11.1} \Setbottle{123}{0.0.01.011.11.1} \Setbottle{221}{0.0.00.110.11.1} \Setbottle{212}{0.0.00.101.11.1} \Setbottle{122}{0.0.00.011.11.1} \Setbottle{211}{0.0.00.100.11.1} \Setbottle{121}{0.0.00.010.11.1} \Setbottle{112}{0.0.00.001.11.1} \Setbottle{210}{0.0.00.100.10.1} \Setbottle{111}{0.0.00.000.11.1} \Setbottle{012}{0.0.00.001.01.1} \Setbottle{110}{0.0.00.000.10.1} \Setbottle{011}{0.0.00.000.01.1} \Setbottle{010}{0.0.00.000.00.1} \Setbottle{000}{0.0.00.000.00.0} %% A simple test using matrices: % % \def\pbottle{\psm{ % \Get{32} \;\;\; \\ % \Get{22} \\ % \Get{21} \Get{12} \\ % \Get{20} \Get{11} \Get{02} \\ % \Get{10} \Get{01} \\ % \Get{00} \\ % }} % % \def\B#1#2#3{\Run{#1#2#3}\pbottle} % % $\def\S{\phantom{mmm}} % \mat{ \B433 \phantom{mm} \\ % \B333 \\ % \B323 \\ % \B322 \S \B223 \\ % \B321 \S \B222 \S \B123 \\ % \B221 \B212 \B122 \\ % \B211 \B121 \B112 \\ % \B210 \S \B111 \S \B012 \\ % \B110 \S \B011 \\ % \B000 \\ % } % $ \def\G #1#2{\Get{#1#2}} \def\B#1#2#3{\Run{#1#2#3}\zha{bottlesieve}} %R local bottlesieve = %R 4/ !G32 \ %R | !G22 | %R | !G21 !G12 | %R |!G20 !G11 !G02| %R | !G10 !G01 | %R \ !G00 / %R bottlesieve:tozmp({zdef="bottlesieve", meta="s", scale="4.5pt"}):addcells():output() %R local bottlesieves = %R 5/ !B433 \ %R | !B333 | %R | !B323 | %R | !B322 !B223 | %R |!B321 !B222 !B123| %R | !B221!B212!B122 | %R | !B211!B121!B112 | %R |!B210 !B111 !B012| %R | !B110 !B011 | %R \ !B000 | %R %R -- A bug fix: %R -- (find-dn6 "zhas.lua" "MixedPicture") %R -- (find-dn6 "zhas.lua" "MixedPicture" "addarrowsexcept =") %R -- (find-dn6 "zhas.lua" "MixedPicture-cuts") %R -- (find-dn6file "zhas.lua" "addxys =") %R -- (find-dn6 "picture.lua" "V" " xy =") %R %R V.__index.xy = function (v) return pformat("(%s,%s)", v[1], v[2]) end %R %R MixedPicture.__index. %R arrows = function (mp, w) return (mp.ar or mp.zha):arrows(w) end %R %R bottlesieves:tozmp({zdef="bottlesieves", meta="s", scale="42pt"}) %R :addcells() %R :addarrowsexcept("w", "(0,4)0") %R :output() \pu $$\Opens(\Opens(\dagHouse•••••)) \;\;=\;\; \Opens(\zha{bott}) \;\;=\;\; \zha{bottlesieves} $$ The elements of $\Opens(\Opens(H))$ are exactly the sieves on $H$. The operation $\calA \mto \calA^*$ that takes sieves on $H$ to principal sieves is a J-operator on $\Opens(\Opens(H))$ (see \cite{PH2}). \newpage % «top-sheaves-in-my-notation» (to ".top-sheaves-in-my-notation") \section*{Topological sheaves in my notation} \def\calVi{\calV_i} \def\calVj{\calV_j} \def\hij{h_i|_j} \def\hji{h_j|_i} %D diagram top-sheaves-my-notation-1 %D 2Dx 100 +20 +20 +20 +20 +20 +20 +20 +20 +20 +20 +20 +20 %D 2D 100 A0 C0 %D 2D \ \ %D 2D +20 A1 C1 E1 G1 I1 %D 2D / | / | / \ / \ / \ %D 2D +20 A2 | C2 | E2 E3 G2 G3 I2 I3 %D 2D \ | \ | \ / \ / \ | %D 2D +20 A3 C3 E4 G4 I4 I5 %D 2D +15 B0' F0' %D 2D +10 B0 ---> D0 F0 ------> H0 %D 2D %D ren A0 A1 A2 A3 ==> X U V W %D ren C0 C1 C2 C3 ==> F(X) F(U) F(V) F(W) %D ren B0' B0 D0 ==> \Opens(X)\;\; \Opens(X)^\op \Set %D ren F0' F0 H0 ==> \Opens(X)\;\; \Opens(X)^\op \Set %D ren E1 E2 E3 E4 ==> \bigcup\calV \calVi \calVj \calVi∩\calVj %D ren G1 G2 G3 G4 ==> F(\bigcup\calV) F(\calVi) F(\calVj) F(\calVi∩\calVj) %D ren I1 I2 I3 I4 I5 ==> g h_i h_j \hij \hji %D %D (( A0 A1 <- %D A1 A2 <- %D A2 A3 <- %D A1 A3 <- %D C0 C1 -> %D C1 C2 -> %D C2 C3 -> %D C1 C3 -> %D B0' xy+= -10 0 %D B0 xy+= -10 0 %D D0 xy+= -10 0 %D B0' place %D B0 D0 -> %D %D E1 E2 <- %D E1 E3 <- %D E2 E4 <- %D E3 E4 <- %D G1 G2 -> %D G1 G3 -> %D G2 G4 -> %D G3 G4 -> %D F0' place %D F0 H0 -> %D %D I4 xy+= -10 0 I5 xy+= -10 0 %D I4 xy+= 4 0 I5 xy+= -4 0 %D I1 I2 |-> %D I1 I3 |-> %D I2 I4 |-> %D I3 I5 |-> %D )) %D enddiagram %D $$\pu \diag{top-sheaves-my-notation-1} $$ $$ \begin{array}[t]{l} I : \text{a set} \\ \calV : I → \Opens(X) \\ \bigcup\calV := \bigcup_{i∈I} \calV_i \\ g : F(\bigcup\calV) \\ h : (i:I) \to F(\calV_i) \\ i,j : I \\ g|_\calV : F_e(\calV) \\ g|_\calV := λi.F(ι:\calV_i→\bigcup\calV)(g) \\ \end{array} % \!\!\!\!\!\!\!\! % \begin{array}[t]{l} \hij := F(ι:\calV_i∩\calV_j→\calV_i)(h_i) \\ \hji := F(ι:\calV_j∩\calV_j→\calV_j)(h_j) \\ F_0(\calV) := F(\bigcup\calV) \\ F_1(\calV) := (i:I) \to F(\calV_i) \\ F_e(\calV) := \setofst {h:(i:I)→F(\calV_i)} {∀(i,j:I).\hij=\hji} \\ F_2(\calV) := (i,j:I) \to F(\calV_i∩\calV_j) \\ \end{array} $$ %D diagram top-sheaves-my-notation-2 %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 A0 B0 %D 2D | \ | \ %D 2D +22 | \ B1 B2 %D 2D +8 Ae - A1 - A2 B3 - B4 %D 2D +8 B5 - B6 %D 2D +8 B7 - B8 %D 2D %D ren A0 Ae A1 A2 ==> F_0(\calV) F_e(\calV) F_1(\calV) F_2(\calV) %D ren B0 B1 B2 B3 B4 ==> g g|_\calV g|_\calV h h %D ren B5 B6 ==> h λi,j.\hij %D ren B7 B8 ==> h λi,j.\hji %D %D (( A0 Ae -> %D A0 A1 -> %D Ae A1 -> %D A1 A2 -> %D %D B0 B1 |-> %D # B0 B2 |-> %D B3 B4 |-> %D B5 B6 |-> %D B7 B8 |-> %D )) %D enddiagram %D $$\pu \diag{top-sheaves-my-notation-2} $$ \newpage % (find-maclanemoerdijkpage (+ 11 83) "5. Sheaves and cross-sections") % (find-maclanemoerdijkpage (+ 11 87) "Corollary 4") {\bf II.5. Sheaves and cross-sections} (Page 87): %D diagram ?? %D 2Dx 100 +40 +20 %D 2D 100 A0 - A1 C0 %D 2D | | | %D 2D +20 A2 - A3 C1 %D 2D %D 2D +15 B0 - B1 %D 2D %D ren A0 A1 ==> ΓΛ_P P %D ren A2 A3 ==> F F %D ren B0 B1 ==> \Sh(X) \SetsOXop %D ren C0 C1 ==> P ΓΛ_P %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l σ %D A1 A3 -> .plabel= r θ %D A0 A3 harrownodes nil 20 nil <-> %D A2 A3 |-> %D %D B0 B1 <- sl^ .plabel= a ΓΛ %D B0 B1 >-> sl_ .plabel= b \text{inc} %D # newnode: B1' at: @B1+v(45,0) .TeX= =\widehat{\Opens(X)}=\PSh(X)? place %D newnode: B1' at: @B1+v(30,0) .TeX= =\widehat{\Opens(X)} place %D %D C0 C1 -> .plabel= r η %D )) %D enddiagram %D $$\pu \diag{??} $$ % (find-maclanemoerdijkpage (+ 11 88) "6. Sheaves as Étale Spaces") (Page 88): 6. Sheaves as Étale Spaces %D diagram ?? %D 2Dx 100 +25 +45 +20 %D 2D 100 L0 A0 - A1 R0 %D 2D | | | | %D 2D +20 L1 A2 - A3 R1 %D 2D %D 2D +15 B0' - B0 - B1 %D 2D %D ren A0 A1 ==> ΛP P %D ren A2 A3 ==> Y ΓY %D ren B0 B1 ==> \Bund(X) \SetsOXop %D ren L0 L1 ==> ΛΓY Y %D ren R0 R1 ==> P ΓΛP %D %D (( A0 A1 <-| %D A0 A2 -> # .plabel= l σ %D A1 A3 -> # .plabel= r θ %D A0 A3 harrownodes nil 20 nil <-> %D A2 A3 |-> %D %D newnode: B0' at: @B0+v(-35,0) .TeX= \Top/X B0' B0 = %D B0 B1 <- sl^ .plabel= a Λ %D B0 B1 -> sl_ .plabel= b Γ %D # newnode: B1' at: @B1+v(45,0) .TeX= =\widehat{\Opens(X)}=\PSh(X)? place %D # newnode: B1' at: @B1+v(30,0) .TeX= =\widehat{\Opens(X)} place %D %D R0 R1 -> .plabel= r η_P %D L0 L1 -> .plabel= l ε_Y %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % «sheaves-on-a-site» (to ".sheaves-on-a-site") % (mmop 13 "sheaves-on-a-site") % (mmoa "sheaves-on-a-site") \subsubsection*{III.4. Sheaves on a Site} (Page 121) % (find-maclanemoerdijkpage (+ 11 121) "4. Sheaves on a Site") % (find-maclanemoerdijkpage (+ 11 123) "Proposition 1") Definition in page 122: % %D diagram ?? %D 2Dx 100 +20 +20 +20 +30 +30 %D 2D 100 A0 A1 B0 - B1 C0 D0 %D 2D | | / | | %D 2D +20 A2 B2 C1 D1 %D 2D %D ren A0 A1 A2 ==> C J(C) ∀S %D ren B0 B1 B2 ==> 𝐛yC P S %D ren C0 C1 ==> \Hom(𝐛yC,P) \Hom(S,P) %D ren D0 D1 ==> g g∘i %D %D (( A0 place %D A1 A2 <- .plabel= r ∈ %D B0 B1 -> .plabel= a ∃!g %D B0 B2 <- .plabel= l i %D B2 B1 -> .plabel= r ∀f %D C0 C1 -> .plabel= r \sm{(∘i)\\\text{iso}} %D D0 D1 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ Archetypal case: % %D diagram ?? %D 2Dx 100 +20 +20 +20 +30 +30 %D 2D 100 A0 A1 B0 - B1 C0 D0 %D 2D | | / | | %D 2D +20 A2 B2 C1 D1 %D 2D %D ren A0 A1 A2 ==> U J(U) ∀\calU %D ren B0 B1 B2 ==> {↓}U F \calU %D ren C0 C1 ==> \Hom({↓U},F) \Hom(\calU,F) %D ren D0 D1 ==> g g∘i %D %D (( A0 place %D A1 A2 <- .plabel= r ∈ %D B0 B1 -> .plabel= a ∃!g %D B0 B2 <- .plabel= l i %D B2 B1 -> .plabel= r ∀f %D C0 C1 -> .plabel= r \sm{(∘i)\\\text{iso}} %D D0 D1 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ Only the `$j$'s: % %D diagram ?? %D 2Dx 100 100 +20 +20 +30 +30 %D 2D 100 A0 A1 B0 - B1 C0 D0 %D 2D | | / | | %D 2D +20 A2 B2 C1 D1 %D 2D %D ren A0 A1 A2 ==> . P^* ∀P %D ren B0 B1 B2 ==> P^* F P %D ren C0 C1 ==> \Hom(P^*,F) \Hom(P,F) %D ren D0 D1 ==> g g∘d %D %D (( A0 place %D A1 A2 <- .plabel= l \sm{d\\\text{dense}} %D B0 B1 -> .plabel= a ∃!g %D B0 B2 <- .plabel= l d %D B2 B1 -> .plabel= r ∀f %D C0 C1 -> .plabel= r \sm{(∘d)\\\text{iso}} %D D0 D1 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ All dense truth values: % %D diagram ?? %D 2Dx 100 100 +20 +20 +30 +30 %D 2D 100 A0 A1 B0 - B1 C0 D0 %D 2D | | / | | %D 2D +20 A2 B2 C1 D1 %D 2D %D ren A0 A1 A2 ==> . ∀Q ∀P %D ren B0 B1 B2 ==> Q F P %D ren C0 C1 ==> \Hom(Q,F) \Hom(P,F) %D ren D0 D1 ==> g g∘d %D %D (( A0 place %D A1 A2 <- .plabel= l \sm{d\\\text{dense}} %D B0 B1 -> .plabel= a ∃!g %D B0 B2 <- .plabel= l d %D B2 B1 -> .plabel= r ∀f %D C0 C1 -> .plabel= r \sm{(∘d)\\\text{iso}} %D D0 D1 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ All dense maps (see Bell p.174): % % (find-books "__cats/__cats.el" "bell-lst") % (find-belltpage (+ 14 174) "(mu-)sheaf") % %D diagram ?? %D 2Dx 100 100 +20 +20 +30 +30 %D 2D 100 A0 A1 B0 - B1 C0 D0 %D 2D | | / | | %D 2D +20 A2 B2 C1 D1 %D 2D %D ren A0 A1 A2 ==> . ∀B ∀A %D ren B0 B1 B2 ==> B F A %D ren C0 C1 ==> \Hom(B,F) \Hom(A,F) %D ren D0 D1 ==> g g∘d %D %D (( A0 place %D A1 A2 <- .plabel= l \sm{d\\\text{dense}} %D B0 B1 -> .plabel= a ∃!g %D B0 B2 <- .plabel= l d %D B2 B1 -> .plabel= r ∀f %D C0 C1 -> .plabel= r \sm{(∘d)\\\text{iso}} %D D0 D1 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage \subsubsection*{III.5. The associated sheaf functor} (Page 128): % (find-maclanemoerdijkpage (+ 11 128) "5. The associated sheaf functor" "P^+") %D diagram ?? %D 2Dx 100 +40 +20 %D 2D 100 A0 - A1 C0 %D 2D | | | %D 2D +20 A2 - A3 C1 %D 2D %D 2D +15 B0 - B1 %D 2D %D ren A0 A1 ==> 𝐛a{P} P %D ren A2 A3 ==> F F %D ren B0 B1 ==> \Sh(\catC,J) \SetsCop %D ren C0 C1 ==> P i𝐛aP %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l ? %D A1 A3 -> .plabel= r ? %D A0 A3 harrownodes nil 20 nil <-> %D A2 A3 |-> %D %D B0 B1 <- sl^ .plabel= a 𝐛a %D B0 B1 >-> sl_ .plabel= b i %D newnode: A0' at: @A0+v(-25,0) .TeX= (P^+)^+= place %D newnode: B1' at: @B1+v(30,0) .TeX= =\widehat{\Opens(X)} place %D %D C0 C1 -> .plabel= r η %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % «LT-subsumes-groth» (to ".LT-subsumes-groth") % (mmop 12 "LT-subsumes-groth") % (mmoa "LT-subsumes-groth") % (find-maclanemoerdijkpage (+ 11 233) "V.4 Lawvere-Tierney Subsumes Grothendieck") \section*{V.4 Lawvere-Tierney Subsumes Grothendieck} % _ _ _ _ _ % | | ___ ___ __ _| (_) ___ | |_ ___ _ __ ___ (_) % | | / _ \ / __/ _` | | |/ __| | __/ _ \| '_ \ / _ \| | % | |__| (_) | (_| (_| | | | (__ | || (_) | |_) | (_) | | % |_____\___/ \___\__,_|_|_|\___| \__\___/| .__/ \___/|_| % |_| % % «localic-topoi» (to ".localic-topoi") % (find-books "__cats/__cats.el" "maclane-moerdijk") % (find-maclanemoerdijkpage (+ 11 470) "IX. Localic Topoi") % (find-maclanemoerdijkpage (+ 11 480) "4. Embeddings and Surjections of Locales") % (find-maclanemoerdijkpage (+ 11 483) "nucleus") % (find-maclanemoerdijkpage (+ 11 487) "5. Localic Topoi") \section*{IX. Localic Topoi} % (find-maclanemoerdijkpage (+ 11 471) "Lemma 1") (Page 471) Lemma IX.1.1: %D diagram ?? %D 2Dx 100 +25 %D 2D 100 A0 - A1 %D 2D | | %D 2D +20 A2 - A3 %D 2D %D 2D +15 B0 - B1 %D 2D %D ren A0 A1 ==> Φ(V) V %D ren A2 A3 ==> U Ψ(U) %D ren B0 B1 ==> A B %D %D (( A0 A1 <-| %D A0 A2 -> %D A1 A3 -> %D A0 A3 harrownodes nil 20 nil <-> %D A2 A3 |-> %D B0 B1 <- sl^ .plabel= a Φ %D B0 B1 -> sl_ .plabel= b Ψ %D %D newnode: A3' at: @A3+v(50,0) .TeX= =\bigvee\setofst{V∈B}{Φ(V)≤U} place %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +30 %D 2D 100 A0 - A1 %D 2D | | %D 2D +20 A2 - A3 %D 2D %D 2D +15 B0 - B1 %D 2D %D 2D +15 C0 - C1 %D 2D %D ren A0 A1 ==> f^{-1}(V) V %D ren A2 A3 ==> U f_*(U) %D ren B0 B1 ==> \Opens(S) \Opens(T) %D ren C0 C1 ==> S T %D %D (( A0 A1 <-| %D A0 A2 -> %D A1 A3 -> %D A0 A3 harrownodes nil 20 nil <-> %D A2 A3 |-> %D B0 B1 <- sl^ .plabel= a f^{-1} %D B0 B1 -> sl_ .plabel= b f_* %D C0 C1 -> .plabel= a f %D %D newnode: A3' at: @A3+v(60,0) .TeX= =\bigcup\setofst{V∈\Opens(T)}{f^{-1}V⊆U} place %D )) %D enddiagram %D $$\pu \diag{??} $$ % (find-maclanemoerdijkpage (+ 11 472) "(Locales)") (Page 472): % %D diagram ?? %D 2Dx 100 +65 +30 +30 +40 %D 2D 100 A0 B0 - B1 C0 - C1 %D 2D | | | | | %D 2D +25 A1 B2 - B3 C2 - C3 %D 2D | | | | | %D 2D +25 A2 B4 - B5 C4 - C5 %D 2D %D ren A0 A1 A2 ==> (\Locales) (\Frames)^\op (\Spaces) %D ren B0 B1 C0 C1 ==> S T (\Opens(S),⊆) (\Opens(T),⊆) %D ren B2 B3 C2 C3 ==> \Opens(S) \Opens(T) (\Opens(S),⊆) (\Opens(T),⊆) %D ren B4 B5 C4 C5 ==> S T (S,\Opens(S)) (T,\Opens(T)) %D %D %D (( A0 A1 <-> %D A1 A2 <- %D %D B0 B1 -> .plabel= a f %D B0 B2 <-> %D B1 B3 <-> %D B0 B3 varrownodes nil 17 nil <-> %D B2 B3 <- .plabel= a f^{-1} %D B2 B4 <-> %D B3 B5 <-> %D B2 B5 varrownodes nil 17 nil <-| %D B4 B5 -> .plabel= a f %D %D C0 C1 <- %D C0 C2 <-> %D C1 C3 <-> %D C0 C3 varrownodes nil 17 nil <-> %D C2 C3 <- %D C2 C4 <-> %D C3 C5 <-> %D C2 C5 varrownodes nil 17 nil <-| %D C4 C5 -> %D %D newnode: A1' at: @A1+v(35,0) .TeX= (\Frames) place %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % (find-maclanemoerdijkpage (+ 11 472) "(Locales)") (Page 474): % Lemma 1, archetypal case: % %D diagram ?? %D 2Dx 100 +100 +30 %D 2D 100 B0 - B1 %D 2D %D 2D +15 A0 B2 - B3 %D 2D | %D 2D +20 A1 B4 - B5 %D 2D %D ren A0 A1 ==> (\Frames) (\Spaces)^\op %D ren B0 B1 ==> p^{-1}U U %D ren B2 B3 ==> \{0,1\} \Opens(X) %D ren B4 B5 ==> 1 X %D %D (( A0 A1 <- %D newnode: A1' at: @A1+v(35,0) .TeX= (\Spaces) place %D %D B0 B1 <-| %D B2 B3 <- .plabel= a p^{-1} %D B4 B5 -> .plabel= a p %D %D newnode: B0' at: @B0+v(-45,0) .TeX= \setofst{*∈1}{p(*)\not∈U}= place %D newnode: B2' at: @B2+v(-30,0) .TeX= \{∅,\{*\}\}= place %D newnode: B4' at: @B4+v(-22,0) .TeX= \{*\}= place %D )) %D enddiagram %D $$\pu \diag{??} $$ For each $p:1→X$ we define $K$ and $P$ as: % $$\begin{array}{rcl} \Opens(X) \;\; ⊇ \;\; K &:=& \Ker p^{-1} \\ &=& \setofst{U∈\Opens(X)}{p^{-1}U=0} \\ &=& \setofst{U∈\Opens(X)}{p^{-1}U=∅} \\ &=& \setofst{U∈\Opens(X)}{*\not∈p^{-1}U} \\ &=& \setofst{U∈\Opens(X)}{p(*)\not∈U} \\ \Opens(X) \;\; \ni \;\; P &:=& \bigcup K \\ &=& \bigcup\setofst{U∈\Opens(X)}{p(*)\not∈U} \\ &=& \Int(X-\{p(*)\}) \\ \end{array} $$ This $K$ is a {\sl kernel} on $\Opens(X)$. The definition is: a kernel on $\Opens(X)$ is a subset $K⊆\Opens(X)$ that is closed downwards, closed by taking arbitrary unions, and it obeys $1\not∈K$ and, for all $U,V∈\Opens(X)$: % $$U∧V∈K \text{ implies } U∈K \text{ or } V∈K.$$ This $P$ is a {\sl proper prime element} of $\Opens(X)$. The definition is: a $P∈\Opens(X)$ is a proper prime element iff $1≠P$, and, for all $U,V∈\Opens(X)$: % $$U∩V⊆P \text{ implies } U⊆P \text{ or } V⊆P.$$ \newpage % _ _ _ % | | ___ ___ | | _ __ | |_ % | | / _ \ / __| _____| | | '_ \| __| % | |__| (_) | (__ |_____| | | |_) | |_ % |_____\___/ \___| | | | .__/ \__| % |_| |_| % % «spaces-from-locales» (to ".spaces-from-locales") % (mmop 14 "spaces-from-locales") % (mmoa "spaces-from-locales") % (find-maclanemoerdijkpage (+ 11 473) "There is an obvious functor Loc") (Page 473): There is an obvious functor $\Loc$ from spaces to locales: %D diagram ?? %D 2Dx 100 +45 +40 +40 %D 2D 100 A0 - A1 C0 - C1 %D 2D | | | | %D 2D +20 A2 - A3 C2 - C3 %D 2D %D 2D +15 B0 - B1 %D 2D %D ren A0 A1 ==> S \Loc(S) %D ren A2 A3 ==> T \Loc(T) %D ren B0 B1 ==> (\Spaces) (\Locales) %D ren C0 C1 ==> (S,\Opens(S)) (\Opens(S),⊆) %D ren C2 C3 ==> (T,\Opens(S)) (\Opens(T),⊆) %D %D (( A0 A1 |-> %D A0 A2 -> .plabel= l f %D A1 A3 -> .plabel= r \Loc(f) %D A0 A3 harrownodes nil 20 nil |-> %D A2 A3 |-> %D B0 B1 -> .plabel= a \Loc %D %D C0 C1 |-> %D C0 C2 -> .plabel= l f %D C1 C3 <- .plabel= r f^{-1} %D C0 C3 harrownodes nil 20 nil |-> %D C2 C3 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ \bsk (Page 475): IX.3: Spaces from locales % (find-maclanemoerdijkpage (+ 11 475) "3. Spaces from Locales") % (find-maclanemoerdijkpage (+ 11 477) "Proposition 2") On locales that come from a topological spaces we define the functor $\Pt: (\Locales)→(\Spaces)$ as this. The functor takes each locale $X≡(\Opens(X),⊆)$ to a topological space $\Pt(X) ≡ (\Pt(X),\Opens(\Pt(X))$, where: % $$\begin{array}{rcl} \Pt(X) &:=& \setofst{p}{p:1→X} \\ \text{for $U∈\Opens(X)$, } \;\;\; \Pt(U) &:=& \setofst{p:1→X}{p(*)∈U} \\ &=& \setofst{p:1→X}{*∈p^{-1}(U)} \\ &=& \setofst{p:1→X}{p^{-1}U = 1} \\ \Opens(\Pt(X)) &:=& \setofst{\Pt(U)}{U∈\Opens(X)} \\ \end{array} $$ On locales $X≡(X,≤)$ we define the functor $\Pt: (\Locales)→(\Spaces)$ as this generalization of the idea above: % $$\begin{array}{rcl} \Pt(X) &:=& \setofst{p}{p:1→X} \\ \text{for $U∈X$, } \;\;\; \Pt(U) &:=& \setofst{p:1→X}{p^{-1}U = 1} \\ \Opens(\Pt(X)) &:=& \setofst{\Pt(U)}{U∈X} \\ \end{array} $$ We draw that functor as: % %D diagram ?? %D 2Dx 100 +40 +30 +45 +40 %D 2D 100 A0 - A1 C0 - C1 D0 %D 2D | | | | | %D 2D +20 A2 - A3 C2 - C3 D1 %D 2D %D 2D +15 B0 - B1 %D 2D %D ren A0 A1 A2 A3 ==> X \Pt(X) Y \Pt(Y) %D ren B0 B1 ==> (\Locales) (\Spaces) %D ren C0 C1 ==> (X,≤) (\Pt(X),\Opens(\Pt(X)) %D ren C2 C3 ==> (Y,≤) (\Pt(Y),\Opens(\Pt(Y)) %D ren D0 D1 ==> p f∘p %D %D (( A0 A1 |-> %D A0 A2 -> .plabel= l f %D A1 A3 -> .plabel= r \Pt(f) %D A0 A3 harrownodes nil 20 nil |-> %D A2 A3 |-> %D B0 B1 -> .plabel= a \Pt %D %D C0 C1 |-> %D C0 C2 <- %D C1 C3 -> %D C0 C3 harrownodes nil 20 nil |-> %D C2 C3 |-> %D %D D0 D1 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage (Page 476): Theorem 1: The functor $\Pt: (\Locales) → (\Spaces)$ is right adjoint to the functor $\Loc: (\Spaces) → (\Locales)$. % (find-maclanemoerdijkpage (+ 11 476) "Theorem 1. Loc -| pt") %D diagram ?? %D 2Dx 100 +20 +40 +30 +50 %D 2D 100 A0 B0 - B1 C0 - C1 %D 2D | | | | | %D 2D +20 A1 B2 - B3 C2 - C3 %D 2D %D 2D +15 D0 - D1 %D 2D %D ren D0 D1 ==> (\Locales) (\Spaces) %D ren B0 B1 B2 B3 ==> \Loc(S) S X \Pt(X) %D ren C0 C1 C2 C3 ==> (\Opens(S),⊆) (S,\Opens(S)) (X,≤) (\Pt(X),\Opens(\Pt(X)) %D %D (( D0 D1 <- sl^ .plabel= a \Loc %D D0 D1 -> sl_ .plabel= b \Pt %D %D B0 B1 <-| %D B0 B2 -> .plabel= l f %D B1 B3 -> .plabel= r g %D B0 B3 harrownodes nil 20 nil <-> %D B2 B3 |-> %D %D C0 C1 <-| %D C0 C2 <- .plabel= l f^{-1} %D C1 C3 -> .plabel= r g %D C0 C3 harrownodes nil 20 nil <-> %D C2 C3 |-> %D %D )) %D enddiagram %D $$\pu \diag{??} $$ % (find-maclanemoerdijkpage (+ 11 477) "Proof") Proof: % $$\begin{array}{rcl} f^{-1} &:=& \\ \end{array} $$ % ____ _ _ _ _ _ % | ___| | | ___ ___ __ _| (_) ___ | |_ ___ _ __ ___ (_) % |___ \ | | / _ \ / __/ _` | | |/ __| | __/ _ \| '_ \ / _ \| | % ___) | | |__| (_) | (_| (_| | | | (__ | || (_) | |_) | (_) | | % |____(_) |_____\___/ \___\__,_|_|_|\___| \__\___/| .__/ \___/|_| % |_| % % «5._localic_topoi» (to ".5._localic_topoi") % (find-maclanemoerdijkpage (+ 11 487) "Proof") % (find-maclanemoerdijkpage (+ 11 488) "Theorem 1") \subsubsection*{IX.5. Localic topoi} (Page 487): (Page 488): Theorem 1: For a Grothendieck topos the following are equivalent: (i) $\calE$ is localic, (ii) there exists a site for $\calE$ with a poset as underlying category, (iii) $\calE$ is generated by the subobjects of its terminal object 1. Proof. Since a frame is a poset, (i) trivially implies (ii). (ii) $⇒$ (iii) Suppose that $\calE = \Sh(\catP,J)$, where $J$ is a Grothendieck topology on a poset $\catP$, and write $𝐛a𝐛y: \catP → \calE$ for the process of sheafification $𝐛a$ followed by the Yoneda embedding. Now for each $p∈\catP$ the map is necessarily monic in presheaves, while sheafification $𝐛a$ is left exact, hence preserves monics. Thus every map $𝐛a𝐛y(p)→1$ is monic, hence gives a subobject of 1. But III.6(17) showed that the images of the $𝐛a𝐛y$ generate the topos $\calE$. %D diagram ?? %D 2Dx 100 +30 +35 +25 %D 2D 100 A0 - A1 - A2 %D 2D %D 2D +20 A4 - A5 %D 2D %D 2D +15 B0 - B1 - B2 = B3 %D 2D %D ren A0 A1 A2 ==> p 𝐛yp 𝐛a𝐛yp %D ren A4 A5 ==> 1 1 %D ren B0 B1 B2 B3 ==> \catP \Sets^{\catP^\op} \Sh(\catP,J) \calE %D %D (( A0 A1 |-> %D A1 A2 |-> %D A1 A4 >-> %D A2 A5 >-> %D A4 A5 |-> %D B0 B1 -> .plabel= a 𝐛y %D B1 B2 -> .plabel= a 𝐛a %D B2 B3 = %D # newnode: B2' at: @B2+v(20,0) .TeX= =\calE place %D B0 B3 -> .slide= -10pt .plabel= b 𝐛a𝐛y %D %D )) %D enddiagram %D $$\pu \diag{??} $$ % (find-maclanemoerdijkpage (+ 11 487) "5. Localic Topoi") % (find-maclanemoerdijkpage (+ 11 488) "Theorem 1. For a Grothendieck topos") % (find-maclanemoerdijkpage (+ 11 488) "canonical") % (find-maclanemoerdijkpage (+ 11 488) "following the Yoneda embedding") \newpage $\acz \psm{ & · & & & \\ & & · & & \\ & · & & · & \\ 20 & & · & & 02 \\ & 10 & & 01 & \\ & & 00 & & \\ } $ is a covering sieve for 22 % (find-books "__cats/__cats.el" "godement") % (find-books "__cats/__cats.el" "grothendieck-tohoku") % (find-grothtohokutpage (+ 9 36) "3 Cohomology with coefficients in a sheaf") \printbibliography \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020maclane-moerdijk veryclean make -f 2019.mk STEM=2020maclane-moerdijk pdf % Local Variables: % coding: utf-8-unix % ee-tla: "mmo" % End: