Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020lindenhovius.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020lindenhovius.tex" :end)) % (defun C () (interactive) (find-LATEXSH "lualatex 2020lindenhovius.tex" "Success!!!")) % (defun D () (interactive) (find-pdf-page "~/LATEX/2020lindenhovius.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020lindenhovius.pdf")) % (defun e () (interactive) (find-LATEX "2020lindenhovius.tex")) % (defun u () (interactive) (find-latex-upload-links "2020lindenhovius")) % (defun v () (interactive) (find-2a '(e) '(d))) % (defun cv () (interactive) (C) (ee-kill-this-buffer) (v) (g)) % (defun d0 () (interactive) (find-ebuffer "2020lindenhovius.pdf")) % (code-eec-LATEX "2020lindenhovius") % (find-pdf-page "~/LATEX/2020lindenhovius.pdf") % (find-sh0 "cp -v ~/LATEX/2020lindenhovius.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020lindenhovius.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020lindenhovius.pdf % file:///tmp/2020lindenhovius.pdf % file:///tmp/pen/2020lindenhovius.pdf % http://angg.twu.net/LATEX/2020lindenhovius.pdf % (find-LATEX "2019.mk") % % «.defs» (to "defs") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") \input 2017planar-has-defs.tex % (find-LATEX "2017planar-has-defs.tex") % %\usepackage[backend=biber, % style=alphabetic]{biblatex} % (find-es "tex" "biber") %\addbibresource{catsem-slides.bib} % (find-LATEX "catsem-slides.bib") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") %L forths["<.>"] = function () pusharrow("<.>") end %L forths["<-->"] = function () pusharrow("<-->") end %L forths["|-->"] = function () pusharrow("|-->") end %L forths["<--|"] = function () pusharrow("<--|") end % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % «defs» (to ".defs") \def\bfP{\mathbf{P}} \def\Ups{\mathsf{U}} \def\Downs{\mathsf{D}} \def\Filts{\mathsf{F}} \def\Jcan{{J_\mathrm{can}}} \def\hasmax{\mathsf{hasmax}} \def\trans {\mathsf{trans}} \def\stab {\mathsf{stab}} \def\plarray#1{\left(\begin{array}{l}#1\end{array}\right)} \def\setofsc#1#2{\{\,#1\;:\;#2\,\}} \def\Sieveson{\mathsf{Sieves\_on}} \def\Coveringsieveson{\mathsf{Covering\_sieves\_on}} \def\Coveringsieveson{\mathsf{Covsieves\_on}} \def\Int{\mathsf{Int}} \def\GrTops{\mathsf{GrTops}} \def\Nucs{\mathsf{Nucs}} \def\nuc{(·)^*} \def\OX{\Opens(X)} \def\OH{\Opens(H)} \def\OB{\Opens(B)} \def\OU{\Opens(U)} \def\OV{\Opens(V)} \def\catD{{\mathbf{D}}} \def\catN{{\mathbf{N}}} \def\calM{{\mathcal{M}}} \def\calY{{\mathcal{Y}}} \def\calT{{\mathcal{T}}} \def\calH{{\mathcal{H}}} \def\SetD{{\Set^\catD}} \def\DP {\calD(\bfP)} \def\Ddp{\calD({↓}p)} \def\GP{\calG(\bfP)} \def\Ddp{\calD({↓}p)} \def\Nuc{\mathrm{Nuc}} \def\Con{\mathrm{Con}} \def\NucDP{\Nuc(\DP)} \def\ConDP{\Con(\DP)} \def\Onep {1${}'$} \def\Onepp{1${}''$} % «House» (to ".House") % %R local house, ohouse = 2/ #1 \, 7/ !h11111 \ %R |#2 #3| | !h01111 | %R \#4 #5/ | !h01011 !h00111 | %R |!h01010 !h00011 !h00101| %R | !h00010 !h00001 | %R \ !h00000 / %R local houser = 1/ 1 \ %R |2 3| %R \4 5/ %R %R house:tomp({def="zfHouse#1#2#3#4#5", scale="6pt", meta="s"}):addcells():output() %R house:tomp({zdef="House" , scale="20pt", meta=nil}):addbullets():addarrows():output() %R houser:tomp({zdef="House" , scale="25pt", meta=nil}):addcells():addarrows():output() %R ohouse:tomp({zdef="OHouse", scale="32pt", meta=nil}):addcells():addarrows("w"):output() \pu % «Bottle» (to ".Bottle") % (find-LATEX "2021groth-tops-defs.tex" "Bottle") % (find-angg "LUA/defwithmanyargs.lua" "SetManyArgs-tests") % (find-angg "LUA/defwithmanyargs.lua" "SetManyArgs-tests" "Bottle") % \def\sa#1#2{\expandafter\def\csname myarg#1\endcsname{#2}} \def\ga#1{\csname myarg#1\endcsname} % \makeatletter \def\BottleSetArgs#1{\BottleSetArgs@#1} \def\BottleSetArgs@#1#2#3#4#5{% \sa{32}{#1}\sa{20}{#2}\sa{21}{#3}\sa{22}{#4}\sa{10}{#5}% \BottleSetArgs@@} \def\BottleSetArgs@@#1#2#3#4#5{% \sa{11}{#1}\sa{12}{#2}\sa{00}{#3}\sa{01}{#4}\sa{02}{#5}% } \makeatother % %R local Bottle = 7/ !ga{32} \ %R | !ga{22} | %R | !ga{21} !ga{12} | %R |!ga{20} !ga{11} !ga{02}| %R | !ga{10} !ga{01} | %R \ !ga{00} / %R Bottle:tomp({zdef="Bottle-5pt", scale="5pt", meta="s"}):addcells():output() %R Bottle:tomp({zdef="Bottle-6pt", scale="6pt", meta="s"}):addcells():output() %R Bottle:tomp({zdef="Bottle-8pt", scale="8pt", meta="s"}):addcells():output() %R Bottle:tomp({zdef="Bottle^2", scale="52pt", meta=nil}):addcells():addarrows():output() \pu \def\bo #1{{ \BottleSetArgs{#1}\zha{Bottle-5pt} }} \def\bbo #1{{\left[ \BottleSetArgs{#1}\zha{Bottle-5pt} \right]}} \def\pwbo#1{{\left( \BottleSetArgs{#1}\zha{Bottle-8pt} \right)}} % % Tests: % $\bo{0 123 456 789} \bbo{0 123 456 789} \pwbo{· {20}{21}· {10}{11}· {00}{01}·}$ % % $$Ω = % \left( % \BottleSetArgs{ % {\bbo{? ??? ??? ???}} % {\bbo{· ?·· ?·· ?··}} {\bbo{· ??· ??· ??·}} {\bbo{· ??? ??? ???}} % {\bbo{· ··· ?·· ?··}} {\bbo{· ··· ??· ??·}} {\bbo{· ··· ??? ???}} % {\bbo{· ··· ··· ?··}} {\bbo{· ··· ··· ??·}} {\bbo{· ··· ··· ???}}} % \zha{Bottle^2} % \right) % $$ % «WideBottle» (to ".WideBottle") % (find-LATEX "2021groth-tops-defs.tex" "WideBottle") % (find-angg "LUA/defwithmanyargs.lua" "SetManyArgs-tests") % (find-angg "LUA/defwithmanyargs.lua" "SetManyArgs-tests" "WideBottle") \makeatletter \def\WideBottleSetArgs#1{\WideBottleSetArgs@#1} \def\WideBottleSetArgs@#1#2#3#4#5{% \sa{32}{#1}\sa{33}{#2}\sa{20}{#3}\sa{21}{#4}\sa{22}{#5}% \WideBottleSetArgs@@} \def\WideBottleSetArgs@@#1#2#3#4#5{% \sa{23}{#1}\sa{10}{#2}\sa{11}{#3}\sa{12}{#4}\sa{13}{#5}% \WideBottleSetArgs@@@} \def\WideBottleSetArgs@@@#1#2#3#4{% \sa{00}{#1}\sa{01}{#2}\sa{02}{#3}\sa{03}{#4}% } \makeatother %R local WideBottle = 7/ !ga{33} \ %R | !ga{32} !ga{23} | %R | !ga{22} !ga{13} | %R | !ga{21} !ga{12} !ga{03}| %R |!ga{20} !ga{11} !ga{02} | %R | !ga{10} !ga{01} | %R \ !ga{00} / %R WideBottle:tomp({zdef="WideBottle", scale="7pt", meta="s"}):addcells():output() %R WideBottle:tomp({zdef="WideBottleMed", scale="10pt", meta=""}):addcells():output() \pu \def\wibo #1{{ \WideBottleSetArgs{#1} \zha{WideBottle} }} \def\pwibo#1{{\left( \WideBottleSetArgs{#1} \zha{WideBottle} \right)}} \def\wiBo #1{{ \WideBottleSetArgs{#1} \zha{WideBottleMed} }} \def\pwiBo#1{{\left( \WideBottleSetArgs{#1} \zha{WideBottleMed} \right)}} % «SlantedHouse» (to ".SlantedHouse") % (find-LATEX "2021groth-tops-defs.tex" "SlantedHouse") % %L SlantedHouse_ts = TCGSpec.new("32; 32,") %L SlantedHouse_td_0 = TCGDims {h=15, v=8, q=15, crh=3.5, crv=7, qrh=5} %L SlantedHouse_td_2 = TCGDims {h=65, v=50, q=15, crh=20, crv=15, qrh=5} %L SlantedHouse_tq = TCGQ.newdsoa(SlantedHouse_td_0, SlantedHouse_ts, %L {tdef="SlantedHouseSmall", meta="1pt s"}, %L "h ap") %L SlantedHouse_tq:LRputs("!ga{L1} !ga{L2} !ga{L3}", "!ga{R1} !ga{R2}"):output() %L %L SlantedHouse_tq = TCGQ.newdsoa(SlantedHouse_td_2, SlantedHouse_ts, %L {tdef="SlantedHouseBig", meta="1pt p"}, %L "h v ap") %L SlantedHouse_tq:LRputs("!ga{L1} !ga{L2} !ga{L3}", "!ga{R1} !ga{R2}"):output() % \pu % \def\SlantedHouseSetargs#1#2#3#4#5{ \sa{L3}{#1}% \sa{L2}{#2}\sa{R2}{#3}% \sa{L1}{#4}\sa{R1}{#5}} % \def\SlantedHouse#1#2#3#4#5{{% \SlantedHouseSetargs{#1}{#2}{#3}{#4}{#5} \tcg{SlantedHouseSmall}}} % \def\SlantedHouseBig#1#2#3#4#5{{% \SlantedHouseSetargs{#1}{#2}{#3}{#4}{#5} \tcg{SlantedHouseBig}}} % \def\bsh#1#2#3#4#5{\left[ \SlantedHouse#1#2#3#4#5 \right]} \def\bsht{\bsh01234} % «ArtDecoN» (to ".ArtDecoN") % (find-LATEX "2021groth-tops-defs.tex" "ArtDecoN") %L ArtDecoN_ts = TCGSpec.new("33; 32,") %L ArtDecoN_td_0 = TCGDims {h=15, v=8, q=15, crh=3.5, crv=7, qrh=5} %L ArtDecoN_td_1 = TCGDims {h=25, v=22, q=15, crh=7.5, crv=7, qrh=5} %L ArtDecoN_td_2 = TCGDims {h=65, v=50, q=15, crh=20, crv=15, qrh=5} %L ArtDecoN_td_3 = TCGDims {h=85, v=70, q=15, crh=30, crv=30, qrh=5} %L ArtDecoN_tq = TCGQ.newdsoa(ArtDecoN_td_0, ArtDecoN_ts, %L {tdef="ArtDecoNSmall", meta="1pt s"}, %L "h ap") %L ArtDecoN_tq:LRputs("!ga{L1} !ga{L2} !ga{L3}", "!ga{R1} !ga{R2} !ga{R3}"):output() %L %L ArtDecoN_tq = TCGQ.newdsoa(ArtDecoN_td_1, ArtDecoN_ts, %L {tdef="ArtDecoNMed", meta="1pt s"}, %L "h v ap") %L ArtDecoN_tq:LRputs("!ga{L1} !ga{L2} !ga{L3}", "!ga{R1} !ga{R2} !ga{R3}"):output() %L %L ArtDecoN_tq = TCGQ.newdsoa(ArtDecoN_td_2, ArtDecoN_ts, %L {tdef="ArtDecoNBig", meta="1pt"}, %L "h v ap") %L ArtDecoN_tq:LRputs("!ga{L1} !ga{L2} !ga{L3}", "!ga{R1} !ga{R2} !ga{R3}"):output() %L %L ArtDecoN_tq = TCGQ.newdsoa(ArtDecoN_td_3, ArtDecoN_ts, %L {tdef="ArtDecoNBigg", meta="1pt"}, %L "h v ap") %L ArtDecoN_tq:LRputs("!ga{L1} !ga{L2} !ga{L3}", "!ga{R1} !ga{R2} !ga{R3}"):output() % \pu % \def\ArtDecoNSetargs#1#2#3#4#5#6{ \sa{L3}{#1}\sa{R3}{#2}% \sa{L2}{#3}\sa{R2}{#4}% \sa{L1}{#5}\sa{R1}{#6}} % \def\ArtDecoN#1#2#3#4#5#6{{% \ArtDecoNSetargs{#1}{#2}{#3}{#4}{#5}{#6} \tcg{ArtDecoNSmall}}} % \def\ArtDecoNMed#1#2#3#4#5#6{{% \ArtDecoNSetargs{#1}{#2}{#3}{#4}{#5}{#6} \tcg{ArtDecoNMed}}} % \def\ArtDecoNBig#1#2#3#4#5#6{{% \ArtDecoNSetargs{#1}{#2}{#3}{#4}{#5}{#6} \tcg{ArtDecoNBig}}} % \def\ArtDecoNBigg#1#2#3#4#5#6{{% \ArtDecoNSetargs{#1}{#2}{#3}{#4}{#5}{#6} \tcg{ArtDecoNBigg}}} % \def\adn #1#2#3#4#5#6{ \ArtDecoN{#1}{#2}{#3}{#4}{#5}{#6} } \def\padn#1#2#3#4#5#6{\left( \ArtDecoN{#1}{#2}{#3}{#4}{#5}{#6} \right)} \def\badn#1#2#3#4#5#6{\left[ \ArtDecoN{#1}{#2}{#3}{#4}{#5}{#6} \right]} \def\padnmed #1#2#3#4#5#6{\left( \ArtDecoNMed {#1}{#2}{#3}{#4}{#5}{#6} \right)} \def\padnbig #1#2#3#4#5#6{\left( \ArtDecoNBig {#1}{#2}{#3}{#4}{#5}{#6} \right)} \def\padnbigg#1#2#3#4#5#6{\left( \ArtDecoNBigg{#1}{#2}{#3}{#4}{#5}{#6} \right)} % ---------------------------------------- {\setlength{\parindent}{0em} \footnotesize Notes on Bert Lindenhovius's ``Grothendieck topologies on posets'' \url{https://arxiv.org/abs/1405.4408v2} \url{https://arxiv.org/abs/1405.4408v2.pdf} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020lindenhovius.pdf} } % (find-books "__cats/__cats.el" "lindenhovius-gtop") %D diagram ?? %D 2Dx 100 +35 +60 +80 %D 2D 100 A0 B0 C0 D0 %D 2D | | | | %D 2D +30 A1 B1 C1 D1 %D 2D | | | | %D 2D +30 A2 B2 C2 D2 %D 2D %D ren A0 A1 A2 ==> 3 2 1 %D ren B0 B1 B2 ==> {↓}3=\{3,2,1\} {↓}2=\{2,1\} {↓}1=\{1\} %D ren C0 ==> \calD({↓}3)=\csm{\{3,2,1\},\\\{2,1\},\\\{1\},\\∅} %D ren C1 ==> \calD({↓}2)=\csm{\{2,1\},\\\{1\},\\∅} %D ren C2 ==> \calD({↓}1)=\csm{\{1\},\\∅} %D ren D0 ==> \calF({↓}3)=\Ftop %D ren D1 ==> \calF({↓}3)=\Fmid %D ren D2 ==> \calF({↓}1)=\Fbot %D %D (( A2 A1 -> A1 A0 -> %D B0 place B1 place B2 place %D C0 place C1 place C2 place %D D0 place D1 place D2 place %D )) %D enddiagram %D $$\pu \def\Ftop{\csm{\{\{3,2,1\}\},\\ \{\{3,2,1\},\{2,1\}\},\\ \{\{3,2,1\},\{2,1\},\{1\}\},\\ \{\{3,2,1\},\{2,1\},\{1\},∅\}}} \def\Fmid{\csm{\{\{2,1\}\},\\ \{\{2,1\},\{1\}\},\\ \{\{2,1\},\{1\},∅\}}} \def\Fbot{\csm{\{\{1\}\},\\ \{\{1\},∅\}}} \diag{??} $$ %D diagram ??-2 %D 2Dx 100 +35 +60 +80 %D 2D 100 A0 B0 C0 D0 %D 2D | | | | %D 2D +30 A1 B1 C1 D1 %D 2D | | | | %D 2D +30 A2 B2 C2 D2 %D 2D %D ren A0 A1 A2 ==> 3 2 1 %D ren B0 B1 B2 ==> {↓}3=\{3,2,1\} {↓}2=\{2,1\} {↓}1=\{1\} %D ren C0 ==> \calD({↓}3)=\csm{{↓}3,\\{↓}2,\\{↓}1,\\∅} %D ren C1 ==> \calD({↓}3)=\csm{{↓}2,\\{↓}1,\\∅} %D ren C2 ==> \calD({↓}3)=\csm{{↓}1,\\∅} %D ren D0 ==> \calF(\calD({↓}3))=\Ftop %D ren D1 ==> \calF(\calD({↓}3))=\Fmid %D ren D2 ==> \calF(\calD({↓}1))=\Fbot %D %D (( A2 A1 -> A1 A0 -> %D # B0 place B1 place B2 place %D C0 place C1 place C2 place %D D0 place D1 place D2 place %D )) %D enddiagram %D $$\pu \def\Ftop{\csm{{↑}{↓}3,\\ {↑}{↓}2,\\ {↑}{↓}1,\\ {↑}∅}} \def\Fmid{\csm{{↑}{↓}2,\\ {↑}{↓}1,\\ {↑}∅}} \def\Fbot{\csm{{↑}{↓}1,\\ {↑}∅}} \diag{??-2} $$ \newpage % 3. For $\calY = \cmat{\;\;\;\;\;\;▁3,\\1▁,▁1}$ we get: % % %L ArtDecoNQ_ts = TCGSpec.new("33; 32, ", ".??",".?.") % %L ArtDecoNQ_ts:mp({zdef="ArtDecoNQ", scale="12pt", meta=""}):addlrs():output() % \pu % % % \def\mygrotop{{ % \padnbig % {\badn?·??11} {\badn·1·?·1} % {\badn··?·1·} {\badn···?·1} % {\badn····1·} {\badn·····1} % }} % \def\mygrotopz{{ % \padnbigg % {\wibo{{32}· · {21}{22}· · {11}{12}· · · · · }} % {\wibo{· · · · · · · · · · · {01}{02}{03}}} % {\wibo{· · {20}· · · {10}· · · · · · · }} % {\wibo{· · · · · · · · · · · {01}{02}· }} % {\wibo{· · · · · · {10}· · · · · · · }} % {\wibo{· · · · · · · · · · · {01}· · }} % }} % \def\mysubzha {\wiBo{{32}{33} {20}··· ···· {00}··{03}}} % \def\mynucleus {\left( \zha{ArtDecoNQ} \right)_{(·)^*}} % \def\mycongruence{\left( \zha{ArtDecoNQ} \right)_{(∼)}} % \def\mysetofsieves{\cmat{\;\;\;\;\;\;▁3,\\1▁,▁1}} % % % $$\setlength{\arraycolsep}{0pt} % \begin{array}{ccc} % \mynucleus && \mysubzha \\ % &\mysetofsieves& \\ % \mycongruence && \scalebox{0.8}{$\mygrotop$} \\ % \end{array} % $$ % (lindp 64 "B.25") % (lind "B.25") % (find-grtopsonposetspage 64 "Proposition B.25.") % (find-grtopsonposetstext 64 "Proposition B.25.") $$ \begin{array}{crll} (\calY↦(·)^*) & \calS^* &= \calY\to \calS \\ (\calY↦H') & H' &= \{\calS\in H:\calS=(\calY\to\calS)\}=\{(\calY\to\calS):\calS∈H\} \\ (\calY↦∼) & ∼ &= \{(\calR,\calS)∈H^2:\calR∩\calY=\calS∩\calY\} \\ (\calY↦J) & J(u) &= \{\calS\inΩ(u):u\in (\calY\to \calS)\} \\ \end{array} $$ and we will define some operations, with names like $(J \mapsto \calY)$ and $(\calY \mapsto)$, that ``convert'' a $J$ to a $\calY$ and vice-versa. We will define all these conversions first, then get some visual intuition about how they work, and only then discuss which composites of them are identities. This section is about how to understand the ``essence'' of some sections of \cite{Lindenhovius} from some examples. The precise meaning of this ``essence'' will be discussed at the end. % (find-grtopsonposetspage 48 "B Grothendieck topologies and Locale Theory") \newpage % «double-negation-old» (to ".double-negation-old") % (grcp 28 "double-negation") % (grc "double-negation") {\bf The double negation topology:} %L ArtDecoNQ_ts = TCGSpec.new("33; 32, ", ".??",".??") %L ArtDecoNQ_ts = TCGSpec.new("33; 32, ", ".??",".?.") %L ArtDecoNQ_ts:mp({zdef="WB_notnot", scale="12pt", meta=""}):addlrs():output() \pu %L ArtDecoNQ_ts = TCGSpec.new("33; 32, ", ".??",".??") %L ArtDecoNQ_ts:mp({zdef="ArtDecoNQ", scale="12pt", meta=""}):addlrs():output() \pu \def\mygrotop{{ \padnbig {\badn?·??11} {\badn·?·?·1} {\badn··?·1·} {\badn···?·1} {\badn····1·} {\badn·····1} }} \def\mygrotopz{{ \padnbigg {\wibo{{32}· · {21}{22}· · {11}{12}· · · · · }} {\wibo{· · · · · · · · · · · {01}{02}{03}}} {\wibo{· · {20}· · · {10}· · · · · · · }} {\wibo{· · · · · · · · · · · {01}{02}· }} {\wibo{· · · · · · {10}· · · · · · · }} {\wibo{· · · · · · · · · · · {01}· · }} }} \def\mysubzha {\wiBo{·{33} {20}··· ···· {00}··{03}}} \def\mynucleus {\left( \zha{ArtDecoNQ} \right)_{(·)^*}} \def\mycongruence{\left( \zha{ArtDecoNQ} \right)_{(∼)}} $$\begin{array}{ccc} \mynucleus && \mysubzha \\ \\ &\{1▁,▁1\}& \\ \\ \mycongruence && \mygrotop \\ \end{array} $$ $$\scalebox{0.8}{$\mygrotopz$} =\mygrotop $$ From \cite{Lindenhovius}, proposition B.8, page 51: % % (find-grtopsonposetspage 51 "Proposition B.8.") % (find-grtopsonposetstext 51 "Proposition B.8.") % (lindp 51 "B.8") % (lind "B.8") % %D diagram B.8 %D 2Dx 100 +45 +35 +10 %D 2D 100 A0 B0 C0 C1 D0 %D 2D || || | | %D 2D +20 A1 B1 C2 C3 D1 %D 2D %D 2D +15 E0 F0 F1 G0 %D 2D || | | %D 2D +20 E1 F2 F3 G1 %D 2D %D ren A0 A1 ==> \NucDP \GP %D ren B0 B1 ==> j:\DP→\DP J∈\GP %D ren C0 C1 C2 C3 ==> j j_J J_j J %D ren E0 E1 ==> (·)^*:H→H J⊆Ω %D ren F0 F1 F2 F3 ==> (·)^* (·)^* J J %D %D (( A0 A1 -> sl_ %D A0 A1 <- sl^ %D B0 B1 |-> sl_ %D B0 B1 <-| sl^ %D C0 C2 |-> %D C1 C3 <-| %D E0 E1 |-> sl_ %D E0 E1 <-| sl^ %D F0 F2 |-> %D F1 F3 <-| %D newnode: D0 at: @C1+v(60,0) %D newnode: D1 at: @C3+v(60,0) %D D0 .TeX= j_J(U):=\setofst{p∈\bfP}{U∩{↓}p∈J(p)} place %D D1 .TeX= J_j(p):=\setofst{S∈\Ddp}{p∈j(S)} place %D newnode: G0 at: @F1+v(60,0) %D newnode: G1 at: @F3+v(60,0) %D G0 .TeX= \calS^*:=\setofst{u∈H}{\calS∩{↓}u∈J(u)} place %D G1 .TeX= J(u):=\setofst{\calS∈Ω(u)}{u∈\calS^*} place %D )) %D enddiagram %D $$\pu \diag{B.8} $$ From \cite{Lindenhovius}, proposition B.12, page 55: % % (find-grtopsonposetspage 55 "Proposition B.12") % (find-grtopsonposetstext 55 "Proposition B.12") % %D diagram B.12 %D 2Dx 100 +45 +35 +10 %D 2D 100 A0 B0 C0 C1 D0 %D 2D || || | | %D 2D +20 A1 B1 C2 C3 D1 %D 2D %D 2D +15 E0 F0 F1 G0 %D 2D || | | %D 2D +20 E1 F2 F3 G1 %D 2D %D ren A0 A1 ==> \NucDP \Sub(\DP)^\op %D ren B0 B1 ==> j:\DP→\DP M⊆\DP %D ren C0 C1 C2 C3 ==> j j_M M_j J %D ren E0 E1 ==> (·)^*:H→H H'⊆H %D ren F0 F1 F2 F3 ==> (·)^* (·)^* H' H' %D %D (( A0 A1 -> sl_ %D A0 A1 <- sl^ %D B0 B1 |-> sl_ %D B0 B1 <-| sl^ %D C0 C2 |-> %D C1 C3 <-| %D E0 E1 |-> sl_ %D E0 E1 <-| sl^ %D F0 F2 |-> %D F1 F3 <-| %D newnode: D0 at: @C1+v(60,0) %D newnode: D1 at: @C3+v(60,0) %D D0 .TeX= j_M(a):=\bigwedge\setofst{m∈M}{a≤m} place %D D1 .TeX= M_j:=\setofst{x∈L}{j(x)=x} place %D newnode: G0 at: @F1+v(60,0) %D newnode: G1 at: @F3+v(60,0) %D G0 .TeX= \calR^*:=\bigwedge\setofst{\calS∈H'}{\calR≤\calS} place %D G1 .TeX= H':=\setofst{\calR∈H}{\calR^*=\calR} place %D )) %D enddiagram %D $$\pu \diag{B.12} $$ From \cite{Lindenhovius}, proposition B.23, page 63: % % (find-grtopsonposetspage 63 "Proposition B.23.") % (find-grtopsonposetstext 63 "Proposition B.23.") % %D diagram B.23 %D 2Dx 100 +45 +35 +10 %D 2D 100 A0 B0 C0 C1 D0 %D 2D || || | | %D 2D +20 A1 B1 C2 C3 D1 %D 2D %D 2D +15 E0 F0 F1 G0 %D 2D || | | %D 2D +20 E1 F2 F3 G1 %D 2D %D ren A0 A1 ==> \NucDP \ConDP %D ren B0 B1 ==> j:\DP→\DP θ⊆\DP^2 %D ren C0 C1 C2 C3 ==> j j_θ θ_j θ %D ren E0 E1 ==> (·)^*:H→H ∼\;⊆H×H %D ren F0 F1 F2 F3 ==> (·)^* (·)^* ∼ ∼ %D %D (( A0 A1 -> sl_ %D A0 A1 <- sl^ %D B0 B1 |-> sl_ %D B0 B1 <-| sl^ %D C0 C2 |-> %D C1 C3 <-| %D E0 E1 |-> sl_ %D E0 E1 <-| sl^ %D F0 F2 |-> %D F1 F3 <-| %D newnode: D0 at: @C1+v(60,0) %D newnode: D1 at: @C3+v(60,0) %D D0 .TeX= j_θ(a):=\bigvee\setofst{b∈\DP}{aθb} place %D D1 .TeX= θ_j:=\setofst{(a,b)∈\DP^2}{j(a)=j(b)} place %D newnode: G0 at: @F1+v(60,0) %D newnode: G1 at: @F3+v(60,0) %D G0 .TeX= \calS^*:=\bigvee\setofst{\calR∈H}{\calR∼\calS} place %D G1 .TeX= ∼\;:=\setofst{(\calR,\calS)∈H^2}{\calR^*=\calS^*} place %D )) %D enddiagram %D $$\pu \diag{B.23} $$ \newpage From \cite{Lindenhovius}, theorem B.25, page 64... % % (lindp 64 "B.25") % (lind "B.25") % (find-grtopsonposetspage 64 "Proposition B.25.") % (find-grtopsonposetstext 64 "Proposition B.25.") % %D diagram ?? %D 2Dx 100 +60 +30 +25 +20 +25 %D 2D 100 A0 - A1 B0 - B1 C0 - C1 %D 2D | | | | | | %D 2D +25 A2 - A3 B2 - B3 C2 - C3 %D 2D %D ren A0 A1 A2 A3 ==> \NucDP \Sub(\DP)^\op \ConDP \GP %D ren B0 B1 B2 B3 ==> j M θ J %D ren C0 C1 C2 C3 ==> (·)^* H' ∼ J %D %D (( A0 A1 -> .plabel= a j↦\calM_j %D A0 A2 -> .plabel= l j↦θ_j %D A0 A3 -> .plabel= m j↦J_j %D A1 A3 -> .plabel= r \calM↦J_\calM %D A2 A3 -> .plabel= b θ↦J_θ %D %D B0 B1 |-> %D B0 B2 |-> %D B0 B3 |-> %D B1 B3 |-> %D B2 B3 |-> %D %D C0 C1 |-> sl^ %D C0 C1 <-| sl_ %D C0 C2 |-> sl^ %D C0 C2 <-| sl_ %D C0 C3 |-> sl^ %D C0 C3 <-| sl_ %D C1 C3 |-> sl^ %D C1 C3 <-| sl_ %D C2 C3 |-> sl^ %D C2 C3 <-| sl_ %D )) %D enddiagram %D $$\pu \diag{??} $$ \def\M{\mathcal{M}} \def\D{\mathcal{D}} \def\G{\mathcal{G}} \def\P{\mathbf{P}} \def\down{{↓}} $$ \begin{array}{rll} J_\M(p) & = \{S\in\D(\down p):\forall M\in\M(S\subseteq M\implies p\in M)\}; & \M\in\Sub(\D(\P)) \\ J_j(p) & = \{S\in\D(\down p):p\in j(S)\}; & j\in\Nuc(\D(\P)) \\ J_\theta(p) & = \{S\in\D(\down p):S\theta\down p\}; & \theta\in\Con(\D(\P)) \\ j_J(A) & = \{p\in\P:A\cap\down p\in J(p)\}; &J\in\G(\P)\\ j_\theta(A) & = \bigcup\{B\in\D(\P):B\theta A\}; & \theta\in\Con(\D(\P))\\ j_\M(A) & = \bigcap\{A\in\M:A\subseteq M\}; & \M\in\Sub(\D(\P)) \\ \theta_j& = \ker j=\{(A,B)\in\D(\P)^2:j(A)=j(B)\}; & j\in\Nuc(\D(\P))\\ \theta_J & = \{(A,B)\in\D(\P)^2:\forall p\in\P(A\cap\down p\in J(p)\Longleftrightarrow B\cap\down p\in J(p))\}; &J\in\G(\P) \\ \M_j & = \{A\in\D(\P):j(A)=A\}=j[\D(\P)]; & j\in\Nuc(\D(\P))\\ \M_J & = \{A\in\D(\P):\forall p\in\P(A\cap\down p\in J(p)\implies p\in A)\}; &J\in\G(\P) \\ \end{array} $$ From \cite{Lindenhovius}, theorem C.4, page 74... % $$ \begin{array}{crll} (X↦J) & J_X(p) &= \{S\in\D(\down p):p\in X\to S\} \\ (\calY↦J) & J(u) &= \{\calS\inΩ(u):u\in (\calY\to \calS)\} \\ \\ (X↦j) & j_X(A) &= X\to A \\ (\calY↦(·)^*) & \calS^* &= \calY\to \calS \\ \\ (X↦θ) & \theta_X &= \ker i_X^{-1}= \{(A,B)\in\D(\P)^2:A\cap X=B\cap X\} \\ (\calY↦∼) & ∼ &= \{(\calR,\calS)∈H^2:\calR∩\calY=\calS∩\calY\} \\ \\ (X↦\M) & \M_X &= \{A\in\D(\P):A=X\to A\}=\{X\to A:A\in\D(\P)\} \\ (\calY↦H') & H' &= \{\calS\in H:\calS=(\calY\to\calS)\}=\{(\calY\to\calS):\calS∈H\} \\ \end{array} $$ % % (lindp 74 "C.4") % (lind "C.4") % (find-grtopsonposetspage 74 "Theorem C.4") % (find-grtopsonposetstext 74 "Theorem C.4") % %D diagram ?? %D 2Dx 100 +30 +30 +30 +15 +15 +20 +15 +15 %D 2D 100 A0 ---- A1 B0 ---- B1 C0 ---- C1 %D 2D | \ / | | \ / | | \ / | %D 2D +15 | A4 | | B4 | | C4 | %D 2D | / \ | | / \ | | / \ | %D 2D +15 A2 ---- A3 B2 ---- B3 C2 ---- C3 %D 2D %D ren A0 A1 A2 A3 A4 ==> \NucDP \Sub(\DP)^\op \ConDP \GP \Pts(\bfP)^\op %D ren B0 B1 B2 B3 B4 ==> j M θ J ? %D ren C0 C1 C2 C3 C4 ==> (·)^* H' ∼ J \calY %D %D (( A0 A1 -> .plabel= a j↦\calM_j %D A0 A2 -> .plabel= l j↦θ_j %D # A0 A3 -> .plabel= m j↦J_j %D A1 A3 -> .plabel= r \calM↦J_\calM %D A2 A3 -> .plabel= b θ↦J_θ %D A4 A0 -> %D A4 A1 -> %D A4 A2 -> %D A4 A3 -> %D %D B0 B1 |-> %D B0 B2 |-> %D # B0 B3 |-> %D B1 B3 |-> %D B2 B3 |-> %D B4 B0 |-> %D B4 B1 |-> %D B4 B2 |-> %D B4 B3 |-> %D %D C0 C1 |-> sl^ %D C0 C1 <-| sl_ %D C0 C2 |-> sl^ %D C0 C2 <-| sl_ %D # C0 C3 |-> sl^ %D # C0 C3 <-| sl_ %D C1 C3 |-> sl^ %D C1 C3 <-| sl_ %D C2 C3 |-> sl^ %D C2 C3 <-| sl_ %D C4 C0 |-> %D C4 C1 |-> %D C4 C2 |-> %D C4 C3 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % (fooi "\\cap" "∩" "\\down" "{↓}" "\\subseteq" "⊆" "\\in" "∈" "\\forall" "∀" "\\theta" "θ") $$ \begin{array}{crll} (\M↦J) & J_\M(p) & = \{S∈\D({↓} p):∀ M∈\M(S⊆ M\implies p∈ M)\} \\ (H'↦J) & J(u) & = \{\calS∈Ω(u):∀\calT∈H'.\;(\calS⊆\calT\implies u∈\calT)\} \\ \\ (j↦J) & J_j(p) & = \{S∈\D({↓} p):p∈ j(S)\} \\ ((·)^*↦J) & J(u) & = \{\calS∈Ω(u):u∈\calS^*\} \\ \\ (θ↦J) & J_θ(p) & = \{S∈\D({↓} p):Sθ{↓} p\} \\ (∼↦J) & J(u) & = \{\calS∈Ω(u):\calS∼{↓}u\} \\ \\ (J↦j) & j_J(A) & = \{p∈\P:A∩{↓} p∈ J(p)\} \\ (J↦(·)^*) & \calS^* & = \{u∈D:\calS∩{↓}u∈J(u)\} \\ \\ (θ↦j) & j_θ(A) & = \bigcup\{B∈\D(\P):Bθ A\}\\ (∼↦(·)^*) & \calS^* & = \bigcup\{\calR∈H:\calR∼\calS\}\\ \\ (\M↦j) & j_\M(A) & = \bigcap\{A∈\M:A⊆ M\} \\ (H'↦(·)^*) & \calS^* & = \bigcap\{\calT∈H':\calS⊆\calT\} \\ \\ (j↦θ) & θ_j & = \ker j=\{(A,B)∈\D(\P)^2:j(A)=j(B)\}\\ ((·)^*↦∼) & ∼ & = \ker j=\{(\calR,\calS)∈H^2:\calR^*=\calS^*\}\\ \\ (J↦θ) & θ_J & = \{(A,B)∈\D(\P)^2:∀ p∈\P(A∩{↓} p∈ J(p) \Leftrightarrow B∩{↓} p∈ J(p))\} \\ (J↦∼) & ∼ & = \{(\calR,\calS)∈H^2:∀ u∈D.\;(\calR∩{↓}u∈J(u) \Leftrightarrow \calS∩{↓}u∈ J(u))\} \\ \\ (j↦\M) & \M_j & = \{A∈\D(\P):j(A)=A\}=j[\D(\P)] \\ ((·)^*↦H') & H' & = \{\calS∈H:\calS^*=\calS\}=H^* \\ \\ (J↦\M) & \M_J & = \{A∈\D(\P):∀ p∈\P(A∩{↓} p∈ J(p) ⇒ p∈ A)\} \\ (J↦H') & H' & = \{\calS∈H:∀ u∈D.\; (\calS∩{↓}u∈J(u) ⇒ u∈\calS)\} \\ \end{array} $$ \newpage %D diagram ?? %D 2Dx 100 +15 +20 +15 +15 +20 +15 +15 %D 2D 100 B0 ---- B1 C0 ---- C1 %D 2D | \ | | \ / | %D 2D +15 A4 | | | C4 | %D 2D \ | \ | | / \ | %D 2D +15 A3 B2 ---- B3 C2 ---- C3 %D 2D %D ren A3 A4 ==> J \calY %D ren B0 B1 B2 B3 ==> (·)^* H' ∼ J %D ren C0 C1 C2 C3 C4 ==> (·)^* H' ∼ J \calY %D %D (( A4 A3 |-> sl^ %D A4 A3 <-| sl_ %D %D B0 B1 |-> sl^ %D B0 B1 <-| sl_ %D B0 B2 |-> sl^ %D B0 B2 <-| sl_ %D B0 B3 |-> sl^ %D B0 B3 <-| sl_ %D B1 B3 |-> sl^ %D B1 B3 <-| sl_ %D B2 B3 |-> sl^ %D B2 B3 <-| sl_ %D %D C0 C1 |-> sl^ %D C0 C1 <-| sl_ %D C0 C2 |-> sl^ %D C0 C2 <-| sl_ %D # C0 C3 |-> sl^ %D # C0 C3 <-| sl_ %D C1 C3 |-> sl^ %D C1 C3 <-| sl_ %D C2 C3 |-> sl^ %D C2 C3 <-| sl_ %D C4 C0 |-> %D C4 C1 |-> %D C4 C2 |-> %D C4 C3 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ $$ \begin{array}{crll} (\calY↦J) & J(u) &= \{\calS∈Ω(u):\calY∩{↓}u⊆\calS\} \\ (J↦\calY) & \calY &= \{u∈D:J(u)=\{{↓}u\}\} \\ \\ ((·)^*↦H') & H' & = \{\calS∈H:\calS^*=\calS\}=H^* \\ (H'↦(·)^*) & \calS^* & = \bigcap\{\calT∈H':\calS⊆\calT\} \\ \\ ((·)^*↦∼) & ∼ & = \{(\calR,\calS)∈H^2:\calR^*=\calS^*\}\\ (∼↦(·)^*) & \calS^* & = \bigcup\{\calR∈H:\calR∼\calS\}\\ \\ ((·)^*↦J) & J(u) & = \{\calS∈Ω(u):u∈\calS^*\} \\ (J↦(·)^*) & \calS^* & = \{u∈D:\calS∩{↓}u∈J(u)\} \\ \\ (H'↦J) & J(u) & = \{\calS∈Ω(u):∀\calT∈H'.\;(\calS⊆\calT ⇒ u∈\calT)\} \\ (J↦H') & H' & = \{\calS∈H:∀ u∈D.\; (\calS∩{↓}u∈J(u) ⇒ u∈\calS)\} \\ \\ (∼↦J) & J(u) & = \{\calS∈Ω(u):\calS∼{↓}u\} \\ (J↦∼) & ∼ & = \{(\calR,\calS)∈H^2:∀ u∈D.\;(\calR∩{↓}u∈J(u) ↔ \calS∩{↓}u∈ J(u))\} \\ \\ (\calY↦(·)^*) & \calS^* &= \calY\to \calS \\ (\calY↦H') & H' &= \{\calS\in H:\calS=(\calY\to\calS)\}=\{(\calY\to\calS):\calS∈H\} \\ (\calY↦∼) & ∼ &= \{(\calR,\calS)∈H^2:\calR∩\calY=\calS∩\calY\} \\ (\calY↦J) & J(u) &= \{\calS\inΩ(u):u\in (\calY\to \calS)\} \\ \end{array} $$ These are some other constructions that I am starting to translate... $$\begin{array}{rcl} (·)^* &:& \Downs(\Opens(B)) → \Downs(\Opens(B)) \\ (·)^* &:& \Downs(\Opens(X)) → \Downs(\Opens(X)) \\ Ω(U) &=& \Downs(\Opens(U)) \\ \Jcan(U) &=& \setofst{\calS∈Ω(U)}{\calS^*={↓}U} \\ J(U)(\calS) &=& \calS^* \\ \\ (·)^* &:& \Downs(X) → \Downs(X) \\ Ω(u) &=& \Downs({↓}u) \\ \Jcan(u) &=& \setofst{\calS∈Ω(u)}{\calS^*={↓}u} \\ J(u)(\calS) &=& \calS^* \\ \\ J_j(p) &:=& \setofst{S∈\calD({↓}p)}{p∈j(S)} \\ J(U) &:=& \setofst{\calS∈\Downs({↓}U)}{U∈\calS^*} \\ \\ j_J(U) &:=& \setofst{p∈𝐛P}{p∈j(S)} \\ \calS^* &:=& \setofst{V∈\Opens(B)}{\calS∩{↓}V∈J(V)} \\ \\ 𝐛P &≡& B \\ \calD(𝐛P) &≡& \Opens(B) \\ \mathrm{Nuc}(\calD(𝐛P)) &≡& \setofst{ (·)^*: \Opens(B)→\Opens(B) }{ (·)^* \text{ is a J-operator}} \\ \calG(𝐛P) &≡& \setofst{ J⊆Ω_{\Set^{\Opens(B)^\op}} }{ J \text{ is a Gr.top.}} \\ \end{array} $$ % \section{Mac Lane/Moerdijk} % % \cite[section V.1, page 38]{MacLaneMoerdijk} % % % (find-books "__cats/__cats.el" "maclane-moerdijk") % % (find-maclanemoerdijkpage (+ 11 38) "Sieve on C =") % % (find-maclanemoerdijkpage (+ 11 38) "Omega(C) =") % % (find-maclanemoerdijkpage (+ 11 38) "t(C)") % % (find-maclanemoerdijkpage (+ 11 110) "Definition 1. A Grothendieck Topology") % % $$\begin{array}{rcl} % \text{Sieve on $C$} &=& \text{Subfunctor of $\Hom_\catC(-,C)$} \\ % Ω(C) &=& \setofst{S}{\text{$S$ is a sieve on $C$ in $\catC$}} \\ % t(C) &=& \setofst{h}{\cod(h) = C} \\ % \end{array} % $$ % % And if $g:C'→C$ is an arrow in $\catC$ then: % % % $$\begin{array}{rrcl} % (-)·g: &Ω(C)& →& Ω(C')\\ % & S & ↦& S·g = \setofst{h}{g∘h∈S} \\ % \end{array} % $$ % % %D diagram ?? % %D 2Dx 100 +25 +30 % %D 2D 100 A0 - A1 C0 % %D 2D | | | % %D 2D +20 A2 - A3 C1 % %D 2D % %D 2D +20 B0 - B1 % %D 2D % %D ren A0 A1 A2 A3 ==> C Ω(C) C' Ω(C') % %D ren C0 C1 ==> S S·g % %D ren B0 B1 ==> \catC^\op \Set % %D % %D (( A0 A1 |-> % %D A0 A2 <- .plabel= l g % %D A1 A3 -> .plabel= r (-)·g % %D A0 A3 harrownodes nil 20 nil |-> % %D A2 A3 |-> % %D newnode: B0' at: @B0+v(0,-8) .TeX= \catC place % %D B0 B1 -> % %D C0 C1 |-> % %D )) % %D enddiagram % %D % $$\pu % \diag{??} % $$ % \newpage 2021jun20: %D diagram ?? %D 2Dx 100 +40 %D 2D 100 A0 - A1 %D 2D | / %D 2D +40 A2 - A3 %D 2D %D ren A0 A1 A2 A3 ==> 𝓨 \nuc J j %D %D (( A0 A1 |-> sl^ .plabel= a C.4.2 %D A0 A1 <--| sl_ %D A0 A2 |-> sl_ .plabel= l \sm{2.8,\\C.4.1} %D A0 A2 <-| sl^ .plabel= r 2.9 %D A2 A1 <-> .plabel= m \sm{B.8,\\B.25} %D A2 A3 <--> %D )) %D enddiagram %D $$\pu \diag{??} $$ Definition C.2: % % (lindp 64 "B.25") % (linda "B.25") % $$\begin{array}{rcl} X→Y &=& \bigcup \setofsc{A∈\DP}{A∩X⊆Y} \\ 𝓨→𝓩 &=& \bigcup \setofst{𝓢∈H}{𝓢∩𝓨⊆𝓩} \\ &=& \bigcup \setofst{𝓢∈H}{𝓢 ⊆ 𝓨 →_M 𝓩} \\ &=& \bigcup \setofst{𝓢∈H}{𝓢 ⊆ \Int(𝓨 →_M 𝓩)} \\ &=& \Int(𝓨 →_M 𝓩) \\ \end{array} $$ 2.8, C.4.1: % % (lindp 11 "2.8") % (linda "2.8") % (lindp 74 "C.4") % (linda "C.4") % $$\begin{array}{lcr} J_X(p) &=& \setofsc{S∈\Ddp}{X∩{↓}p⊆S} \\ J_X &=& λp∈𝐏. \; \setofsc{S∈\Ddp}{X∩{↓}p⊆S} \\ (X↦J)(X) &=& λp∈𝐏. \; \setofsc{S∈\Ddp}{X∩{↓}p⊆S} \\ (X↦J) &=& λX∈\Pts(𝐏). \; λp∈𝐏. \; \setofsc{S∈\Ddp}{X∩{↓}p⊆S} \\ [5pt] J_X(p) &=& \setofsc{S∈\Ddp}{p∈X→S} \\ J_X &=& λp∈𝐏. \; \setofsc{S∈\Ddp}{p∈X→S} \\ (X↦J)(X) &=& λp∈𝐏. \; \setofsc{S∈\Ddp}{p∈X→S} \\ (X↦J) &=& λX∈\Pts(𝐏). \; λp∈𝐏. \; \setofsc{S∈\Ddp}{p∈X→S} \\ [5pt] (𝓨↦J) &=& λ𝓨∈\Pts(𝐃_0). \; λu∈𝐃_0. \; \setofst{𝓢∈Ω(u)}{u∈𝓨→𝓢} \\ &=& λ𝓨∈\Pts(𝐃_0). \; λu∈𝐃_0. \; \setofst{𝓢∈Ω(u)}{{↓}u⊆𝓨→𝓢} \\ &=& λ𝓨∈\Pts(𝐃_0). \; λu∈𝐃_0. \; \setofst{𝓢∈Ω(u)}{{↓}u∩𝓨⊆𝓢} \\ &=& λ𝓨∈\Pts(𝐃_0). \; λu∈𝐃_0. \; \setofst{𝓢∈Ω(u)}{𝓨∩{↓}u⊆𝓢} \\ \end{array} $$ % 2.8: % % % % (lindp 11 "2.8") % % (linda "2.8") % % % $$\begin{array}{lcr} % J_X(p) &=& \setofsc{S∈\Ddp}{X∩{↓}p⊆S} \\ % J_X &=& λp∈𝐏. \; \setofsc{S∈\Ddp}{X∩{↓}p⊆S} \\ % (X↦J)(X) &=& λp∈𝐏. \; \setofsc{S∈\Ddp}{X∩{↓}p⊆S} \\ % (X↦J) &=& λX∈\Pts(𝐏).\; λp∈𝐏. \; \setofsc{S∈\Ddp}{X∩{↓}p⊆S} \\ % (𝓨↦J) &=& λ𝓨∈\Pts(𝐃_0).\; λu∈𝐃_0. \; \setofst{𝓢∈Ω(u)}{𝓨∩{↓}u⊆𝓢} \\ % \end{array} % $$ 2.9: % % (lindp 12 "2.9") % (linda "2.9") % $$\begin{array}{lcr} X_J &=& \setofsc{p∈𝐏}{J(p)=\{{↓}p\}} \\ (J↦X)(J) &=& \setofsc{p∈𝐏}{J(p)=\{{↓}p\}} \\ (J↦X) &=& λJ∈\G(𝐏). \; \setofsc{p∈𝐏}{J(p)=\{{↓}p\}} \\ (J↦𝓨) &=& λJ∈\GrTops(𝐃). \; \setofst{u∈𝐃_0}{J(u)=\{{↓}u\}} \\ \end{array} $$ B.8, B.25: % % (lindp 64 "B.25") % (linda "B.25") % $$\begin{array}{lcr} J_j(p) &=& \setofsc{S∈\Ddp}{p∈j(S)} \\ J_j &=& λp∈𝐏. \; \setofsc{S∈\Ddp}{p∈j(S)} \\ (j↦J)(j) &=& λp∈𝐏. \; \setofsc{S∈\Ddp}{p∈j(S)} \\ (j↦J) &=& λj∈\Nuc(\DP). \; λp∈𝐏. \; \setofsc{S∈\Ddp}{p∈j(S)} \\[5pt] (\nuc↦J) &=& λ\nuc∈\Nucs(H). \; λu∈𝐃_0. \; \setofst{𝓢∈Ω(u)}{u∈𝓢^*} \\ \\ j_J(A) &=& \setofsc{p∈𝐏}{A∩{↓}p∈J(p)} \\ j_J &=& λA∈\DP. \; \setofsc{p∈𝐏}{A∩{↓}p∈J(p)} \\ (J↦j)(J) &=& λA∈\DP. \; \setofsc{p∈𝐏}{A∩{↓}p∈J(p)} \\ (J↦j) &=& λJ∈\G(𝐏). \; λA∈\DP. \; \setofsc{p∈𝐏}{A∩{↓}p∈J(p)} \\[5pt] (J↦\nuc) &=& λJ∈\GrTops(𝐃). \; λ𝓢∈H. \; \setofst{u∈𝐃_0}{𝓢∩{↓}u∈J(u)} \\ \end{array} $$ C.4.2: % % (lindp 74 "C.4") % (linda "C.4") % $$\begin{array}{lcr} j_X(A) &=& X→A \\ j_X &=& λA∈\DP. \; X→A \\ (X↦j)(X) &=& λA∈\DP. \; X→A \\ (X↦j) &=& λX∈\Pts(𝐏). \; λA∈\DP. \; X→A \\[5pt] (𝓨↦\nuc) &=& λ𝓨∈\Pts(𝐃_0). \; λ𝓢∈H. \; 𝓨→𝓢 \\ \end{array} $$ \newpage % https://mail.google.com/mail/ca/u/0/#sent/QgrcJHrtvWmlxhvCBggGFXMszBggGkmQmdv My hypothesis about C1: $$\begin{array}{lcr} X_j &=& \setofsc{p∈𝐏}{j({↓}p) ≠ j({↓}p∖\{p\})} \\ (j↦X)(j) &=& \setofsc{p∈𝐏}{j({↓}p) ≠ j({↓}p∖\{p\})} \\ (j↦X) &=& λj∈\Nuc(\DP). \; \setofsc{p∈𝐏}{j({↓}p) ≠ j({↓}p∖\{p\})} \\ [5pt] (\nuc↦𝓨) &=& λ\nuc∈\Nucs(H). \; \setofst{u∈𝐃_0}{({↓}u)^* ≠ ({↓}u∖\{u\})^*} \\ \end{array} $$ \bsk Trying to decypher the real C1: C.1, p.70: \def\iYm{{i_Y^{-1}}} \def\iff{\text{iff}} $$\begin{array}{rcr} X_f & = & \setofsc{p∈𝐏}{f({↓}p) ≠ f({↓}p∖\{p\})} \\ [5pt] p∈X_\iYm & \iff & \iYm({↓}p) ≠ \iYm({↓}p∖\{p\}) \\ & \iff & Y∩{↓}p ≠ Y∩({↓}p∖\{p\}) \\ X_\iYm & = & \setofsc{p∈𝐏}{Y∩{↓}p ≠ Y∩({↓}p∖\{p\})} \\ \end{array} $$ %D diagram C1a %D 2Dx 100 +30 +30 %D 2D 100 A00 = A0 <-| A1 %D 2D %D 2D +15 B0 <-- B1 %D 2D %D 2D +15 C0 `-> C1 %D 2D %D ren A00 A0 A1 ==> A∩Y \iYm(A) A %D ren B0 B1 ==> \D(Y) \DP %D ren C0 C1 ==> Y 𝐏 %D %D (( A00 A0 = A0 A1 <-| %D B0 B1 <- .plabel= a \iYm %D C0 C1 `-> .plabel= a i_Y %D )) %D enddiagram %D $$\pu \diag{C1a} $$ %D diagram ?? %D 2Dx 100 +40 %D 2D 100 A0 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +15 B0 B1 %D 2D %D ren A0 A1 ==> X_f [f]_E %D ren A2 A3 ==> Y [\iYm]_E %D ren B0 B1 ==> \Pts(𝐏)^\op \calE(\DP) %D %D (( A0 A1 <-| %D A0 A2 -> A1 A3 -> %D A2 A3 |-> %D B0 B1 <- sl^ .plabel= a F %D B0 B1 <- sl_ .plabel= b G %D %D )) %D enddiagram %D $$\pu \diag{??} $$ $$X_f = \setofsc{p∈𝐏}{f({↓}p) ≠ f({↓}p∖\{p\})}$$ \newpage $$\begin{array}{rcl} 𝓨→𝓩 &=& \bigcup \setofst{𝓢∈H}{𝓢∩𝓨⊆𝓩} \\ &=& \bigcup \setofst{𝓢∈H}{𝓢 ⊆ 𝓨 →_M 𝓩} \\ &=& \bigcup \setofst{𝓢∈H}{𝓢 ⊆ \Int(𝓨 →_M 𝓩)} \\ &=& \Int(𝓨 →_M 𝓩) \\ % [5pt] % (𝓨↦\nuc) &=& λ𝓨∈\Pts(𝐃_0). \; λ𝓢∈H. \; 𝓨→𝓢 \\ (\nuc↦𝓨) &=& λ\nuc∈\Nucs(H). \; \setofst{u∈𝐃_0}{({↓}u)^* ≠ ({↓}u∖\{u\})^*} \\ % [5pt] % (𝓨↦J) &=& λ𝓨∈\Pts(𝐃_0). \; λu∈𝐃_0. \; \setofst{𝓢∈Ω(u)}{u∈𝓨→𝓢} \\ (J↦𝓨) &=& λJ∈\GrTops(𝐃). \; \setofst{u∈𝐃_0}{J(u)=\{{↓}u\}} \\ % [5pt] % (\nuc↦J) &=& λ\nuc∈\Nucs(H). \; λu∈𝐃_0. \; \setofst{𝓢∈Ω(u)}{u∈𝓢^*} \\ (J↦\nuc) &=& λJ∈\GrTops(𝐃). \; λ𝓢∈H. \; \setofst{u∈𝐃_0}{𝓢∩{↓}u∈J(u)} \\ % %[5pt] \end{array} $$ % (find-books "__cats/__cats.el" "lindenhovius-gtop") \GenericWarning{Success:}{Success!!!} % Used by `M-x cv' %\printbibliography \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020lindenhovius veryclean make -f 2019.mk STEM=2020lindenhovius pdf % Local Variables: % coding: utf-8-unix % ee-tla: "lin" % End: