Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020lambek86.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020lambek86.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020lambek86.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020lambek86.pdf")) % (defun e () (interactive) (find-LATEX "2020lambek86.tex")) % (defun u () (interactive) (find-latex-upload-links "2020lambek86")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020lambek86.pdf") % (find-sh0 "cp -v ~/LATEX/2020lambek86.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020lambek86.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020lambek86.pdf % file:///tmp/2020lambek86.pdf % file:///tmp/pen/2020lambek86.pdf % http://angg.twu.net/LATEX/2020lambek86.pdf % (find-LATEX "2019.mk") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \long\def\ColorRed #1{{\color{Red1}#1}} \long\def\ColorViolet#1{{\color{MagentaVioletLight}#1}} \long\def\ColorViolet#1{{\color{Violet!50!black}#1}} \long\def\ColorGreen #1{{\color{SpringDarkHard}#1}} \long\def\ColorGreen #1{{\color{SpringGreen4}#1}} \long\def\ColorGreen #1{{\color{SpringGreenDark}#1}} \long\def\ColorGray #1{{\color{GrayLight}#1}} \long\def\ColorGray #1{{\color{black!30!white}#1}} \def\calL{\mathcal{L}} % %L dofile "edrxtikz.lua" -- (find-LATEX "edrxtikz.lua") % %L dofile "edrxpict.lua" -- (find-LATEX "edrxpict.lua") % \pu % (find-books "__cats/__cats.el" "lambek86") % (find-books "__cats/__cats.el" "lncs0242") {\setlength{\parindent}{0em} \footnotesize Notes on [Lambek86], a.k.a.: ``Cartesian Closed Categories and Typed $λ$-Calculi'', available at: \url{https://link.springer.com/chapter/10.1007\%2F3-540-17184-3_44} or as pages 136--175 of LNCS 242: \url{https://link.springer.com/book/10.1007/3-540-17184-3} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020lambek86.pdf} } \bsk The introduction says: {\sl While the material in the first part has been published before [L1974, 1980, LS1984], an attempt is made to look at some of it from a different point of view and to clarify some difficult points. At any rate, it is hoped that it will serve as an introduction to the forthcoming book ``Introduction to higher order categorical logic'', written in collaboration with Phil Scott.} \section*{2. Cartesian Categories} % (find-lambek86page (+ -135 140) "2. CARTESIAN CATEGORIES") % (find-lambek86text (+ -135 140) "2. CARTESIAN CATEGORIES") % (find-lambek86page (+ -135 141) "admits the following form of the deduction theorem") % (find-lambek86text (+ -135 141) "admits the following form of the deduction theorem") % (find-books "__logic/__logic.el" "hindley-seldin2") % (find-hindleyseldin2page (+ 14 26) "2C Abstraction in CL") Page 141: Although the conjunction calculus contains no symbol for implication, it admits the following form of the \ColorRed{\sl deduction theorem}: Proposition 2.1: if $φ(x):B→C$ is a proof from the assumption $x:T→A$, there is a proof $κ_{x∈A}φ(x):A∧B→C$ in $\calL$ not depending on the assumption $x$. (...) \msk Proof: there are four cases in the proof of the deduction theorem: (1) $φ(x) = k:B→C$, a proof in $\calL$; (2) $φ(x) = x:T→A$, where $B=T$ and $C=A$; (3) $φ(x) = χ(x)ψ(x)$, where $ψ(x):B→D$ and $χ(x):D→C$; (4) $φ(x) = 〈ψ(x),χ(x)〉$, where $ψ(x):B→D$, $χ(x):B→E$ and $C=D∧E$. \msk We define $κ_{x∈A} φ(x)$ by induction on the ``length'' of $φ(x)$: (1) $κ_{x∈A} k = kπ'_{A,B}$; (2) $κ_{x∈A} x = π_{A,T}$; (3) $κ_{x∈A} (χ(x)ψ(x)) = κ_{x∈A} χ(x) 〈π_{A,B}, κ_{x∈A}ψ(x)〉$; (4) $κ_{x∈A} 〈ψ(x),χ(x)〉 = 〈κ_{x∈A} ψ(x), κ_{x∈A} χ(x)〉$; % From: (find-LATEX "2017planar-has-defs.tex" "defub") % \def\defub#1#2{\expandafter\def\csname ub-#1\endcsname{#2}} \def\ifubundefined#1{\expandafter\ifx\csname ub-#1\endcsname\relax} \def\ub#1{\ifubundefined{#1} \errmessage{UNDEFINED UB: #1} \else \csname ub-#1\endcsname \fi } \def\und#1#2{\underbrace{#1}_{#2}} \def\ka{κ_{x∈A}} %UB \ka( k ) &=& k π'_{A,B} %UB ------ ---- -------- %UB :B→C :B→C :A×B→B %UB ----------- ------------- %UB :A×B→C :A×B→C %L %L defub "cond1" %L %UB \ka( x ) &=& π_{A,T} %UB ------ ------- %UB :T→A :A×T→A %UB ----------- %UB :A×T→A %L %L defub "cond2" %L %UB \ka(χ(x) ψ(x)) &=& \kaχ(x) 〈π_{A,B},\kaψ(x)〉 %UB ---- ---- ---- ------- ---- %UB :D→C :B→D :D→C :A×B→A :B→D %UB --------- ------- ------- %UB :B→C :A×D→C :A×B→D %UB -------------- ----------------- %UB :A×B→C :A×B→A×D %UB ------------------------- %UB :A×B→C %L %L defub "cond3" %L %UB \ka〈ψ(x),χ(x)〉 &=& 〈 \ka ψ(x) , \ka χ(x) 〉 %UB ---- ---- ---- ---- %UB :B→E :B→D :B→E :B→D %UB ----------- --------- -------- %UB :B→D×E :A×B→E :A×B→D %UB -------------- ------------------------ %UB :A×B→D×E :A×B→D×E %L %L defub "cond4" %L % $$\pu \begin{array}{rcl} \ub{cond1} \\ \\ \ub{cond2} \\ \\ \ub{cond3} \\ \\ \ub{cond4} \\ \end{array} $$ \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020lambek86 veryclean make -f 2019.mk STEM=2020lambek86 pdf % Local Variables: % coding: utf-8-unix % ee-tla: "l86" % End: