Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020closure-operator.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020closure-operator.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020closure-operator.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020closure-operator.pdf")) % (defun e () (interactive) (find-LATEX "2020closure-operator.tex")) % (defun u () (interactive) (find-latex-upload-links "2020closure-operator")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020closure-operator.pdf") % (find-sh0 "cp -v ~/LATEX/2020closure-operator.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020closure-operator.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020closure-operator.pdf % file:///tmp/2020closure-operator.pdf % file:///tmp/pen/2020closure-operator.pdf % http://angg.twu.net/LATEX/2020closure-operator.pdf % (find-LATEX "2019.mk") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") % (find-angg ".emacs.papers" "johnstone") % (find-topostheorypage (+ 24 76) "3.1. Topologies") % (find-topostheorypage (+ 24 77) "3.13. Definition") (Page 77): 3.13 Definition. Let $\calE$ be any category with pullbacks. A {\sl universal closure operation} on $\calE$ is defined by specifying, for each $X∈\calE$, a closure operation (i.e., an increasing, order-preserving, idempotent map) on the poset of subobjects of $X$ --- we denote the closure of $X' \monicto X$ by $\ovl{X'} \monicto X$ --- in such a way that closure commutes with pullback along morphisms of $\calE$; i.e., given $Y \ton{f} X$, we have $f^*(\ovl{X'}) ≅ \ovl{f^*(X')}$ as subobjects of $Y$. We shall use the words {\sl dense} and {\sl closed} with their usual meanings relative to a universal closure operation; i.e., $X' \monicto X$ is dense if $\ovl{X'} ≅ X'$, and closed if $\ovl{X'} ≅ X'$. \msk Here is a way to visualize those rules. First line: a monic map $α:A \monicto B$ factors through its closure $\ovl{α}:\ovl{A} \monicto B$; the factorization arrow $A \monicto \ovl{A}$ is not usually named. The closure of $\ovl{α}:\ovl{A} \monicto B$ is a monic $\ovl{\ovl{α}}:\ovl{\ovl{A}} \monicto B$ isomorphic to $\ovl{α}:\ovl{A} \monicto B$. In a shorter notation, $A≤\ovl{A}≅\ovl{\ovl{A}}$. Second line: in the shorter notation the closure operation is order-preserving iff $A≤B$ implies $\ovl{A}≤\ovl{B}$; more formally, if $(α:A \monicto C) ≤ (β:B \monicto C)$ implies $(\ovl{α}:\ovl{A} \monicto C) ≤ (\ovl{β}:\ovl{B} \monicto C)$, where each `$≤$'s between monics should be read as ``factors through''. %D diagram ?? %D 2Dx 100 +25 +25 +25 +25 +25 %D 2D 100 A0 B0 %D 2D %D 2D +25 A1 B1 B2 B3 %D 2D %D 2D +20 C0 D0 %D 2D %D 2D +25 C1 D1 D2 %D 2D %D 2D +25 C2 D3 D4 %D 2D %D 2D %D ren A0 B0 ==> B B %D ren A1 B1 B2 B3 ==> A A \ovl{A} \ovl{\ovl{A}} %D ren C0 D0 ==> C C %D ren C1 D1 D2 ==> B B \ovl{B} %D ren C2 D3 D4 ==> A A \ovl{A} %D %D (( A1 A0 >-> .plabel= l α %D B1 B0 >-> .plabel= l α %D B2 B0 >-> .plabel= m \ovl{α} %D B3 B0 >-> .plabel= r \ovl{\ovl{α}} %D B1 B2 >-> %D B2 B3 <-> .plabel= a ≅ %D %D A0 B1 midpoint .TeX= ⇒ place %D C1 D0 midpoint .TeX= ⇒ xy+= 0 5 place %D %D C0 C1 <-< .plabel= r β %D C0 C2 <-< .plabel= l α %D C1 C2 <-< %D D0 D1 <-< .plabel= m β %D D0 D2 <-< .plabel= m \ovl{β} %D D0 D3 <-< .plabel= l α %D D0 D4 <-< .plabel= m \ovl{α} %D D1 D2 >-> %D D1 D3 <-< %D D2 D4 <-< %D D3 D4 >-> %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage The best way to visualize the last rule is by a slight diagrammatic abuse of of language. We start with a monic $γ:C→D$ and an arrow $f:B→D$ that is not necessarily a monic, as below. We form their pullback, and we call the arrow at the left wall $f^*(γ):A \monicto B$. Let $\ovl{γ}:\ovl{C} \monicto D$ and $\ovl{f^*(γ)}:\ovl{A} \monicto B$ be the closures of $γ$ and $f^*(γ)$. If we draw everything as below then the natural way to draw the pullback of $\ovl{γ}:\ovl{C} \monicto D$ by $f$ would be as an arrow $f^*(\ovl{γ})$ in the same position as $\ovl{f^*(γ)}:\ovl{A} \monicto B$; what the rule $\ovl{f^*(γ)}≅f^*(\ovl{γ})$ says is that $\ovl{f^*(γ)}$ and $f^*(\ovl{γ})$ are isomorphic as subobjects of $B$ --- but we will draw $\ovl{f^*(γ)}$ and $f^*(\ovl{γ})$ as if they were a single arrow. % %D diagram ?? %D 2Dx 100 +25 +25 +35 +25 +25 +25 %D 2D 100 E0 E1 F0 F1 %D 2D %D 2D +20 F2 F3 %D 2D %D 2D +20 E5 F4 F5 %D 2D %D ren E0 E1 F0 F1 ==> B D B D %D ren F2 F3 ==> \ovl{A} \ovl{C} %D ren E5 F4 F5 ==> C A C %D %D (( E0 E1 -> .plabel= a f %D E1 E5 <-< .plabel= l γ %D F0 F1 -> .plabel= a f %D F0 F2 <-< .plabel= m \phantom{mmmm}\ovl{f^*(γ)}≅f^*(\ovl{γ}) %D F0 F4 <-< .plabel= l f^*(γ) %D F1 F3 <-< .plabel= r \ovl{γ} %D F1 F5 <-< .plabel= l γ %D F4 F5 -> %D %D E1 F4 midpoint .TeX= ⇒ xy+= -5 0 place %D %D )) %D enddiagram %D $$\pu \diag{??} $$ We will usually draw that diagram as this, and omit the names of most, or all, of its arrows. % %D diagram ?? %D 2Dx 100 +20 +20 +20 %D 2D 100 F0 F1 %D 2D %D 2D +20 F2 F3 %D 2D %D 2D +20 F4 F5 %D 2D %D ren F0 F1 ==> B D %D ren F2 F3 ==> \ovl{A} \ovl{C} %D ren F4 F5 ==> A C %D %D (( F0 F1 -> # .plabel= a f %D F0 F2 <-< # .plabel= m \phantom{mmmm}\ovl{f^*(γ)}≅f^*(\ovl{γ}) %D F0 F4 <-< # .plabel= l f^*(γ) %D F1 F3 <-< # .plabel= r \ovl{γ} %D F1 F5 <-< # .plabel= l γ %D F2 F3 -> %D F2 F4 <-< %D F3 F5 <-< %D F4 F5 -> %D )) %D enddiagram %D $$\pu \diag{??} $$ \section*{A J-operator induces a universal closure} %D diagram ?? %D 2Dx 100 +20 +20 +20 %D 2D 100 F0 F1 %D 2D %D 2D +20 F2 F3 %D 2D %D 2D +20 F4 F5 %D 2D %D ren F0 F1 ==> Q 1 %D ren F2 F3 ==> \ovl{P}∧Q \ovl{P} %D ren F4 F5 ==> P∧Q P %D %D (( F0 F1 -> # .plabel= a f %D F0 F2 <-< # .plabel= m \phantom{mmmm}\ovl{f^*(γ)}≅f^*(\ovl{γ}) %D F0 F4 <-< # .plabel= l f^*(γ) %D F1 F3 <-< # .plabel= r \ovl{γ} %D F1 F5 <-< # .plabel= l γ %D F2 F3 -> %D F2 F4 <-< %D F3 F5 <-< %D F4 F5 -> %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +20 +20 +20 %D 2D 100 F0 F1 %D 2D %D 2D +20 F2 F3 %D 2D %D 2D +20 F4 F5 %D 2D %D ren F0 F1 ==> Q 1 %D ren F2 F3 ==> \ovl{P}∧Q \ovl{P} %D ren F4 F5 ==> P∧Q P %D %D (( F0 F1 -> # .plabel= a f %D F0 F2 <-< # .plabel= m \phantom{mmmm}\ovl{f^*(γ)}≅f^*(\ovl{γ}) %D F0 F4 <-< # .plabel= l f^*(γ) %D F1 F3 <-< # .plabel= r \ovl{γ} %D F1 F5 <-< # .plabel= l γ %D F2 F3 -> %D F2 F4 <-< %D F3 F5 <-< %D F4 F5 -> %D )) %D enddiagram %D $$\pu \diag{??} $$ \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020closure-operator veryclean make -f 2019.mk STEM=2020closure-operator pdf % Local Variables: % coding: utf-8-unix % ee-tla: "clo" % End: