Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-LATEX "2020awodey.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2020awodey.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2020awodey.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2020awodey.pdf")) % (defun e () (interactive) (find-LATEX "2020awodey.tex")) % (defun u () (interactive) (find-latex-upload-links "2020awodey")) % (defun v () (interactive) (find-2a '(e) '(d)) (g)) % (find-pdf-page "~/LATEX/2020awodey.pdf") % (find-sh0 "cp -v ~/LATEX/2020awodey.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2020awodey.pdf /tmp/pen/") % file:///home/edrx/LATEX/2020awodey.pdf % file:///tmp/2020awodey.pdf % file:///tmp/pen/2020awodey.pdf % http://angg.twu.net/LATEX/2020awodey.pdf % (find-LATEX "2019.mk") % «.8.2._yoneda-embedding» (to "8.2._yoneda-embedding") % «.8.3._yoneda-lemma» (to "8.3._yoneda-lemma") % «.9._adjoints» (to "9._adjoints") % «.10._monads_and_algebras» (to "10._monads_and_algebras") \documentclass[oneside,12pt]{article} \usepackage[colorlinks,citecolor=DarkRed,urlcolor=DarkRed]{hyperref} % (find-es "tex" "hyperref") \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage[x11names,svgnames]{xcolor} % (find-es "tex" "xcolor") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-LATEX "edrx15.sty") \input edrxaccents.tex % (find-LATEX "edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-LATEX "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % (find-es "tex" "geometry") \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\nameof#1{\ulcorner#1\urcorner} \def\Sets{\mathbf{Sets}} \def\HomC{\Hom_\catC} \def\HomS{\Hom_\Sets} {\setlength{\parindent}{0em} \footnotesize Notes on Steve Awodey's ``Category Theory'': \url{https://www.andrew.cmu.edu/user/awodey/} \ssk These notes are at: \url{http://angg.twu.net/LATEX/2020awodey.pdf} \url{http://angg.twu.net/math-b.html\#notes-on-notation-2020} } % __ __ _ _ % \ \ / /__ _ __ ___ __| | __ _ ___ _ __ ___ | |__ % \ V / _ \| '_ \ / _ \/ _` |/ _` | / _ \ '_ ` _ \| '_ \ % | | (_) | | | | __/ (_| | (_| | | __/ | | | | | |_) | % |_|\___/|_| |_|\___|\__,_|\__,_| \___|_| |_| |_|_.__/ % % «8.2._yoneda-embedding» (to ".8.2._yoneda-embedding") % (awop 1 "8.2._yoneda-embedding") % (awo "8.2._yoneda-embedding") \section*{8.2 The Yoneda Embedding} % (find-books "__cats/__cats.el" "awodey") % (find-awodeyctpage (+ 10 160) "8.2 The Yoneda embedding") % (find-awodeyctpage (+ 10 161) "Definition 8.1. The Yoneda embedding") % (find-awodeycttext (+ 10 161) "Definition 8.1. The Yoneda embedding") Page 161: Definition 8.1. The Yoneda embedding is the functor $y : \catC \to \Sets^{\catC^\op}$ taking $C \in \catC$ to the contravariant representable functor, $yC = \HomC(-, C) : \catC^\op \to \Sets$ and taking $f : C \to D$ to the natural transformation, $yf = \HomC(-,f) : \HomC(-,C) \to \HomC(-, D)$. % %D diagram yoneda-embedding-awodey %D 2Dx 100 +40 +30 %D 2D 100 C0 %D 2D | %D 2D v %D 2D +25 C1 |--> C2 %D 2D %D 2D +15 C3 ---> C4 %D 2D %D 2D +20 D0 ---> D1 %D 2D | %D 2D v %D 2D +25 D2 %D 2D %D 2D +15 D3 %D 2D %D ren C0 C1 C2 C3 C4 ==> 1 C \HomC(C,D) \catC^\op \Sets %D ren D0 D1 D2 D3 ==> \HomC(-,C) \HomS(1,\HomC(-,D)) \HomC(-,D) \Sets^{\catC^\op} %D %D (( C0 C2 -> .plabel= r \nameof{f} %D C1 C2 |-> %D C3 C4 -> .plabel= a \HomC(-,D) %D %D D0 D1 -> D1 D2 <-> .plabel= r ≅ %D D0 D2 -> .plabel= l yf # \;=\;\vartheta %D D0 D0 midpoint xy+= -31 0 .TeX= yC\;= place %D D2 D2 midpoint xy+= 31 0 .TeX= =\;yD place %D D3 place %D %D %D )) %D enddiagram % $$\pu \diag{yoneda-embedding-awodey} $$ % __ __ _ _ % \ \ / /__ _ __ ___ __| | __ _ | | % \ V / _ \| '_ \ / _ \/ _` |/ _` | | | % | | (_) | | | | __/ (_| | (_| | | |___ % |_|\___/|_| |_|\___|\__,_|\__,_| |_____| % % «8.3._yoneda-lemma» (to ".8.3._yoneda-lemma") % (awop 1 "8.3._yoneda-lemma") % (awo "8.3._yoneda-lemma") \section*{8.3 The Yoneda Lemma} % (find-awodeyctpage (+ 10 162) "8.3 The Yoneda Lemma") % (find-awodeyctpage (+ 10 162) "Lemma 8.2.(Yoneda).") % (find-awodeycttext (+ 10 162) "Lemma 8.2.(Yoneda).") Page 162: Lemma 8.2 (Yoneda). Let $\catC$ be locally small. For any object $C \in \catC$ and functor $F \in \Sets^{\catC^\op}$ there is an isomorphism $\Hom(yC, F) ≅ FC$ which, moreover, is natural in both $F$ and $C$. %D diagram yoneda-lemma-awodey %D 2Dx 100 +20 +40 %D 2D 100 A0 %D 2D | %D 2D v %D 2D +25 A1 |--> A2 %D 2D %D 2D +15 A3 ---> A4 %D 2D %D 2D +20 B0 ---> B1 %D 2D | %D 2D v %D 2D +25 B2 %D 2D %D 2D +15 B3 %D 2D %D ren A0 A1 A2 A3 A4 ==> 1 C FC \catC^\op \Sets %D ren B0 B1 B2 B3 ==> \HomC(-,C) \HomS(1,F-) F \Sets^{\catC^\op} %D %D (( A0 A2 -> .plabel= r \nameof{a} %D A1 A2 |-> %D A3 A4 -> .plabel= a F %D %D B0 B1 -> %D B1 B2 <-> .plabel= r ≅ %D B0 B2 -> .plabel= l \vartheta %D B0 B0 midpoint xy+= -31 0 .TeX= yC\;= place %D B3 place %D )) %D enddiagram % $$\pu \diag{yoneda-lemma-awodey} $$ % (find-awodeyctpage (+ 10 167) "8.5 Limits in categories of diagrams") % (find-awodeyctpage (+ 10 168) "8.6 Colimits in categories of diagrams") % (find-awodeyctpage (+ 10 171) "free cocompletion") % (find-awodeyctpage (+ 10 172) "8.7 Exponentials in categories of diagrams") % (find-awodeyctpage (+ 10 176) "8.9 Exercises") % _ _ _ _ _ % / \ __| |(_) ___ (_)_ __ | |_ ___ % / _ \ / _` || |/ _ \| | '_ \| __/ __| % / ___ \ (_| || | (_) | | | | | |_\__ \ % /_/ \_\__,_|/ |\___/|_|_| |_|\__|___/ % |__/ % % «9._adjoints» (to ".9._adjoints") % (find-awodeyctpage (+ 10 179) "9 Adjoints") % (find-awodeyctpage (+ 10 179) "9.1 Preliminary definition") % (find-awodeyctpage (+ 10 180) "eta") % (find-awodeyctpage (+ 10 180) "Definition 9.1 (preliminary)") % (find-awodeycttext (+ 10 180) "Definition 9.1 (preliminary)") % (find-awodeyctpage (+ 10 183) "9.2 Hom-set definition") % (find-awodeyctpage (+ 10 187) "9.3 Examples of adjoints") \newpage \section*{9. Adjoints} (Page 180): Definition 9.1 (preliminary). An adjunction between categories $\catC$ and $\catD$ consists of functors % $$F : \catC \two/<-`->/<250> \catD : U$$ % and a natural transformation $η:1_C → U∘F$ with the UMP $∀C.∀D.∀f.∃!g.▁$ below. (Page 183): % (find-awodeyctpage (+ 10 183) "9.2 Hom-set definition") % (find-awodeycttext (+ 10 183) "9.2 Hom-set definition") 9.2 Hom-set definition Proposition 9.4. Given categories and functors $\catC$, $\catD$, $F$, $U$, the following conditions are equivalent: \begin{enumerate} \item $F$ is left adjoint to $U$; that is, there is a natural transformation $η: 1_C → U∘F$ with the UMP $∀C.∀D.∀f.∃!g.▁$ below; \item For any $C∈\catC$ and $D∈\catD$ there is an isomorphism % $$φ: \Hom_\catD(F C, D) → \Hom_\catC(C, U D)$$ % that is natural in both $C$ and $D$. \end{enumerate} % %D diagram adjoints %D 2Dx 100 +25 +20 +20 +20 +20 +20 +20 +20 +25 %D 2D 100 R1 %D 2D %D 2D +20 L0 L1 A0 B0 C0 C1 E0 F0 R2 R3 %D 2D %D 2D +20 L2 L3 A1 B1 C2 C3 E1 F1 R4 R5 %D 2D %D 2D +20 L4 D0 D1 %D 2D %D 2D +20 %D 2D %D ren A0 A1 ==> F{∘}U 1_\catD %D ren B0 B1 ==> FUD D %D ren C0 C1 C2 C3 ==> FC C D UD %D ren D0 D1 ==> \catD \catC %D ren E0 E1 ==> C UFC %D ren E0 E1 ==> C UFC %D ren F0 F1 ==> 1_\catC U{∘}F %D ren R1 R2 R3 R4 R5 ==> ∀C FC UFC ∀D UD %D ren L0 L1 L2 L3 L4 ==> FC ∀C FUD UD ∀D %D %D (( A0 A1 -> .plabel= l ε %D B0 B1 -> .plabel= l ε_D %D C0 C1 <-| %D C0 C2 -> .plabel= l g %D C1 C3 -> .plabel= r f %D C2 C3 |-> %D C0 C3 harrownodes nil 20 nil <-| sl^ .plabel= a ψ %D C0 C3 harrownodes nil 20 nil |-> sl_ .plabel= b ϕ %D D0 D1 <- sl^ .plabel= a F %D D0 D1 -> sl_ .plabel= b U %D E0 E1 -> .plabel= r η_C %D F0 F1 -> .plabel= r η %D R1 R3 -> .plabel= r η_C %D R2 R3 |-> %D R2 R4 -> .plabel= l ∃!g %D R3 R5 -> .plabel= r Ug %D R4 R5 |-> %D R1 R5 -> .slide= 20pt .plabel= r ∀f %D R2 R5 harrownodes nil 20 nil |-> .plabel= b ϕ %D L0 L1 <-| %D L0 L2 -> .plabel= l Ff %D L1 L3 -> .plabel= r ∃!f %D L2 L3 <-| %D L2 L4 -> .plabel= l ε_D %D L0 L4 -> .slide= -20pt .plabel= l ∀g %D L0 L3 harrownodes nil 20 nil <-| .plabel= a ψ %D %D %D )) %D enddiagram %D $$\pu \diag{adjoints} $$ % (find-books "__cats/__cats.el" "awodey") % (find-awodeyctpage (+ 10 187) "9.3 Examples of adjoints") \newpage % __ __ _ % | \/ | ___ _ __ __ _ __| |___ % | |\/| |/ _ \| '_ \ / _` |/ _` / __| % | | | | (_) | | | | (_| | (_| \__ \ % |_| |_|\___/|_| |_|\__,_|\__,_|___/ % % «10._monads_and_algebras» (to ".10._monads_and_algebras") % (awop 3 "10._monads_and_algebras") % (awo "10._monads_and_algebras") \section*{10. Monads and algebras} % (find-awodeyctpage (+ 10 223) "10 Monads and algebras") % (find-awodeycttext (+ 10 223) "10 Monads and algebras") % (find-awodeyctpage (+ 10 223) "10.1 The triangle identities") % (find-awodeyctpage (+ 10 225) "10.2 Monads and adjoints") % (find-awodeyctpage (+ 10 228) "Example 10.4. Let P be a poset.") % (find-awodeycttext (+ 10 228) "Example 10.4. Let P be a poset.") Example 10.4 (p.228): Let $P$ be a poset. %D diagram example-10.4 %D 2Dx 100 +20 +20 %D 2D 100 A0 A1 B0 %D 2D %D 2D +20 A2 A3 B1 %D 2D %D 2D +20 A4 A5 B2 %D 2D %D ren A0 A1 A2 A3 ==> tp p k ik %D ren A4 A5 ==> k p %D ren B0 B1 B2 ==> 1 T T^2 %D %D (( A0 A1 <-| %D A0 A2 -> A1 A3 -> %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil <-| sl^ .plabel= a ♭ %D A0 A3 harrownodes nil 20 nil |-> sl_ .plabel= b ♯ %D %D A4 A5 <- sl^ .plabel= a t %D A4 A5 -> sl_ .plabel= b i %D %D B0 B1 -> .plabel= r η %D B1 B2 -> .plabel= r μ=\id %D )) %D enddiagram %D $$\pu \diag{example-10.4} $$ Example 10.5: $(\Pts,\{-\},\bigcup)$ on $\Sets$ % (find-awodeyctpage (+ 10 228) "Example 10.5" "singleton operation") % (find-awodeycttext (+ 10 228) "Example 10.5" "singleton operation") Proposition 10.6: Eilenberg-Moore %D diagram 10.6-EM-1 %D 2Dx 100 +30 +30 +20 +20 %D 2D 100 L0 A0 A1 R0 M0 %D 2D %D 2D +20 L1 A2 A3 R1 M1 %D 2D %D 2D +20 A4 A5 M2 %D 2D %D ren L0 L1 ==> (TA,μA) (A,α) %D ren A0 A1 A2 A3 ==> (TC,μC) C (A,α) A %D ren A4 A5 ==> \catC^T \catC %D ren R0 R1 ==> C TC %D ren M0 M1 M2 ==> 1 T T^2 %D %D (( L0 L1 -> .plabel= l α %D %D A0 A1 <-| %D A0 A2 -> .plabel= l \sm{Tg;α\\f} %D A1 A3 -> .plabel= r \sm{g;ηC;f} %D A2 A3 |-> %D A4 A5 <- sl^ .plabel= a F %D A4 A5 -> sl_ .plabel= b U %D %D R0 R1 -> .plabel= r ηC %D M0 M1 -> .plabel= r η %D M1 M2 <- .plabel= r μ %D )) %D enddiagram %D $$\pu \diag{10.6-EM-1} $$ %D diagram 10.6-EM-2 %D 2Dx 100 +30 +30 %D 2D 100 D C %D 2D %D 2D +30 CT %D 2D %D ren D C CT ==> \catD \catC \catC^T %D %D (( D C <- sl^ .plabel= a F %D D C -> sl_ .plabel= b U %D %D CT C <- sl^ .plabel= a F^T %D CT C -> sl_ .plabel= b U^T %D %D D CT -> .plabel= l \Phi %D )) %D enddiagram %D $$\pu \diag{10.6-EM-2} $$ %D diagram 10.6-EM-3 %D 2Dx 100 +35 +5 +35 +40 %D 2D 100 A0 A1 %D 2D +8 L0 A2 A3 %D 2D +8 B1 %D 2D +8 B3 %D 2D %D 2D +20 B0 %D 2D +8 L1 B2 %D 2D %D ren A0 A1 A2 A3 ==> FC C D UD %D ren B0 B1 B2 B3 ==> (UFC,μC) C (A,α) A %D ren L0 L1 ==> D (UD,UεD) %D %D (( A0 place A1 place A2 place A3 place %D B0 place B1 place B2 place B3 place %D %D A0 A1 harrownodes nil 30 nil <-| %D A2 A3 harrownodes nil 30 nil |-> %D %D B0 B1 dharrownodes 10 15 nil <-| %D B2 B3 dharrownodes 10 15 nil |-> %D %D L0 L1 |-> %D %D )) %D enddiagram %D $$\pu \diag{10.6-EM-3} $$ % (find-awodeyctpage (+ 10 229) "10.3 Algebras for a monad") % (find-awodeyctpage (+ 10 234) "10.4 Comonads and coalgebras") % (find-awodeyctpage (+ 10 236) "10.5 Algebras for endofunctors") % (find-awodeyctpage (+ 10 244) "10.6 Exercises") \end{document} % __ __ _ % | \/ | __ _| | _____ % | |\/| |/ _` | |/ / _ \ % | | | | (_| | < __/ % |_| |_|\__,_|_|\_\___| % % <make> * (eepitch-shell) * (eepitch-kill) * (eepitch-shell) # (find-LATEXfile "2019planar-has-1.mk") make -f 2019.mk STEM=2020awodey veryclean make -f 2019.mk STEM=2020awodey pdf % Local Variables: % coding: utf-8-unix % ee-tla: "awo" % End: