Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2018-2-MD-VR.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2018-2-MD-VR.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2018-2-MD-VR.pdf")) % (defun e () (interactive) (find-LATEX "2018-2-MD-VR.tex")) % (defun u () (interactive) (find-latex-upload-links "2018-2-MD-VR")) % (find-xpdfpage "~/LATEX/2018-2-MD-VR.pdf") % (find-sh0 "cp -v ~/LATEX/2018-2-MD-VR.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2018-2-MD-VR.pdf /tmp/pen/") % file:///home/edrx/LATEX/2018-2-MD-VR.pdf % file:///tmp/2018-2-MD-VR.pdf % file:///tmp/pen/2018-2-MD-VR.pdf % http://angg.twu.net/LATEX/2018-2-MD-VR.pdf % «.gab-1» (to "gab-1") % «.gab-2» (to "gab-2") % «.gab-3» (to "gab-3") % «.gab-4» (to "gab-4") % «.gab-5» (to "gab-5") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams \catcode`\^^J=10 % (find-es "luatex" "spurious-omega") \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\V{\mathbf{V}} \def\F{\mathbf{F}} \def\Par {\mathsf{par}} \def\Impar{\mathsf{impar}} \def\antitabular{\hskip-5.5pt} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Matemática Discreta \par PURO-UFF - 2018.2 \par VR - 18/dez/2018 - Eduardo Ochs \par Ambas as turmas. \par Proibido usar quaisquer aparelhos eletrônicos. \par Erros de tipo --- p.ex. confundir números com conjuntos, \par listas ou valores de verdade --- são considerados erros graves. } \bsk \bsk \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar { \setlength{\parindent}{0em} 1) \T(Total: 1.0 pts) Vamos definir a operação $Δ$ por: $AΔB:=(A∖B)∪(B∖A)$. Calcule $(AΔB)ΔC$ e $AΔ(BΔC)$ no caso em que $A=\{1,3,5,7\}$, $B=\{2,3,6,7\}$, $C=\{4,5,6,7\}$. \bsk 2) \T(Total: 2.0 pts) Seja $F:\N×\N→\N$ a função que obedece: (F0) $F(0,0)=0$, (FV) $∀y∈\N.F(0,y+1)=F(0,y)+1$, (FH) $∀x∈\N.F(x+1,0)=F(x,0)+10$, (FM) $∀x,y∈\N.F(x+1,y+1)=F(x,y+1)+F(x+1,y)$. a) \B(1.0 pts) Calcule $F(3,3)$. b) \B(1.0 pts) Represente graficamente os valores de $F(x,y)$ para $(x,y)∈\{0,1,2,3\}^2$. \bsk 3) \T(Total: 2.0 pts) Sejam $C(a,b,f):=\setofst{f(x)}{x∈\{a,\ldots,b\}}$, $D(a,c,f):=(∀b∈\{a,\ldots,c-1\}.f(b+1)\not∈C(a,b,f))$, $g:=\{(2,3),(3,4),(4,5),(5,3)\}$. a) \B(0.5 pts) Calcule $C(3,4,g)$. b) \B(1.5 pts) Calcule $D(2,5,g)$. \bsk 4) \T(Total: 3.5 pts) Seja $(*)$ a seguinte proposição: {\sl todo inteiro ímpar é soma de dois inteiros consecutivos}. a) \B(0.5 pts) Traduza $(*)$ para notação matemática. b) \B(3.0 pts) Demonstre $(*)$ no formato com ``então''s e ``suponha''s. \bsk 5) \T(Total: 4.0 pts) Sejam: $f(k) := k·10^k$, $P(k):=(f(k)=200)$, $g(k):=9+9·10+\ldots+9·10^{k-1}$, $h(k):=10^k-1$, $Q(k):=(g(k)=h(k))$. a) \B(0.2 pts) Calcule $f(k)$ e $P(k)$ para $k∈\{1,2,3,4\}$. b) \B(0.2 pts) Calcule $\sum_{i=2}^6 f(i)$ e $\sum_{i=1}^4 f(2i)$. c) \B(1.0 pts) Defina usando somatório uma função $s(k)$ que se comporte como a função $g(k)$, e teste-a verificando se $s(3)=g(3)$, $s(4)=g(4)$, $s(5)=g(5)$. d) \B(0.2 pts) Calcule $s(-2)$, $s(-1)$, $s(0)$. e) \B(0.4 pts) Seja $R(k):=(s(k)=h(k))$. Calcule $R(2)$, $R(1)$, $R(0)$, $R(-1)$. f) \B(2.0 pts) Mostre que se $k∈\N^+$ então $Q(k)→Q(k+1)$. } \newpage % ____ _ % | _ \(_) ___ __ _ ___ % | | | | |/ __/ _` / __| % | |_| | | (_| (_| \__ \ % |____/|_|\___\__,_|___/ % {\bf Dicas:} $\{a,a+1,\ldots\} \;\; = \;\; \setofst{k∈\Z}{a≤k}$ $\{a,a+1,\ldots,b\} \;\; = \;\; \setofst{k∈\Z}{a≤k≤b}$ $\N^+ = \{1,2,\ldots\}$ $\sum_{i=2}^{4} 10^i = 11100$, \;\; $\sum_{i=4}^{2} 10^i = 0$ Se $P(x)=(x=x^2)$ então $P(0)=\V$, $P(1)=\V$, $P(2)=\F$ Se $A,B$ são conjuntos então $A×B = \setofst{(a,b)}{a∈A,b∈B}$ Se $A,B$ são conjuntos então $A∖B = \setofst{a∈A}{a\not∈B}$ $(∃!x∈A.P(a)) \;\; = \;\; (∃x∈A.P(a))∧(∀x',x''∈A.P(x')∧P(x'')→x'=x'')$ $(f:A→B) \;\; = \;\; (f⊆A×B) ∧ (∀a∈A.∃!b∈B.(a,b)∈f)$ Se $f,g$ são funções então $(f∘g)(x)=f(g(x)), \; f^2=f∘f, \; f^3=f∘f∘f$ Se $A,B$ são conjuntos então $B^A = \setofst{f}{f:A→B}$ Se $B$ é um conjunto então $\Pts(B) = \setofst{A}{A⊆B}$ $\Par(b):=(∃a∈\Z.2a=b)$; $\Impar(b):=(∃a∈\Z.2a+1=b)$. \bsk {\bf Uma demonstração com `$∀$' e `$∃$':} \begin{minipage}[t]{23em} \par 1) Suponha $a∈\Z$ \par 2) Suponha $\Impar(a)$ \par 3) Então $\Impar(a)$ \par 4) Então $∃b∈\Z.2b+1=a$ \hfill (Por 3, def) \par 5) Suponha $b∈\Z,2b+1=a$ \par 6) Então $\begin{array}[t]{rcl} a^2 &=& (2b+1)^2 \\ &=& 4b^2 + 4b + 1 \\ &=& 2(b^2+2b) + 1 \\ \end{array}$ \par 7) Então $2b^2+2b∈\Z∧2(b^2+2b)+1=a^2$ \par 8) Então $∃c∈\Z.2c+1=a^2$ \quad ($c:=2b^2+2b$) \par 9) Então $\Impar(a^2)$ \par 10) Então $\Impar(a^2)$ \hfill (Usa 4, fecha 5) \par 11) Então $\Impar(a)→\Impar(a^2)$ \hfill (fecha 2) \par 12) Então $∀a∈\Z.\Impar(a)→\Impar(a^2)$ \hfill (fecha 1) \end{minipage} \bsk {\bf Uma demonstração por indução:} \begin{minipage}[t]{33em} \par 1) Lema: $∀a∈\Z.\Par(a)→\Impar(a+1)$ \par 2) Lema: $∀a∈\Z.\Impar(a)→\Par(a+1)$ \par 3) Suponha $n∈\N$ \par 4) Então $n∈\Z$ \par 5) Então $\Par(n)→\Impar(n+1)$ \hfill (Por 1, com $a:=n$) \par 6) Então $\Impar(n)→\Par(n+1)$ \hfill (Por 2, com $a:=n$) \par 7) Então $\Par(n)∨\Impar(n)→\Par(n+1)∨\Impar(n+1)$ \hfill (Por 5 e 6) \par 8) Então $∀n∈\N.\Par(n)∨\Impar(n)→\Par(n+1)∨\Impar(n+1)$ \hfill (Fecha 4) \par 9) Lema: $\Par(0)$ \par 10) Então $\Par(0)∨\Impar(0)$ \par 11) Então $∀n∈\N.\Par(n)∨\Impar(n)$ \hfill (Por 10 e 8) \end{minipage} \newpage % ____ _ _ _ % / ___| __ _| |__ __ _ _ __(_) |_ ___ % | | _ / _` | '_ \ / _` | '__| | __/ _ \ % | |_| | (_| | |_) | (_| | | | | || (_) | % \____|\__,_|_.__/ \__,_|_| |_|\__\___/ % {\bf Mini-gabarito (não revisado)} \msk % «gab-1» (to ".gab-1") 1) $\def\myeq{\;\;\;=\;\;\;} \def\myeq{\\&=&} \begin{array}[t]{rcl} AΔB &=& \{1,3,5,7\}Δ\{2,3,6,7\} \\ &=& (\{1,3,5,7\}∖\{2,3,6,7\}) ∪ (\{2,3,6,7\}∖\{1,3,5,7\}) \\ &=& \{1,5\}∪\{2,6\} \\ &=& \{1,2,5,6\} \\ BΔC &=& \{2,3,6,7\}Δ\{4,5,6,7\} \myeq \{2,3,4,5\} \\ (AΔB)ΔC &=& \{1,2,5,6\}Δ\{4,5,6,7\} \myeq \{1,2,4,7\} \\ AΔ(BΔC) &=& \{1,3,5,7\}Δ\{2,3,4,5\} \myeq \{1,2,4,7\} \\ \end{array} $ \msk % «gab-2» (to ".gab-2") 2a) Veja abaixo. 2b) $\def\Fxy#1#2#3{F(#1,#2)=#3} \begin{array}[t]{cccc} \Fxy033 & \Fxy13{16} & \Fxy23{60} & \Fxy33{165} \\ \Fxy022 & \Fxy12{13} & \Fxy22{44} & \Fxy32{105} \\ \Fxy011 & \Fxy11{11} & \Fxy21{31} & \Fxy31{61} \\ \Fxy000 & \Fxy10{10} & \Fxy20{20} & \Fxy30{30} \\ \end{array} $ \msk % «gab-3» (to ".gab-3") 3a) $C(3,4,g) = \setofst{g(x)}{x∈\{3,4\}} = \{g(3),g(4)\} = \{4,5\}$ 3b) $\begin{array}{rcl} C(2,2,g) &=& \{g(2)\} = \{3\} \\ C(2,3,g) &=& \{g(2),g(3)\} = \{3,4\} \\ C(2,4,g) &=& \{g(2),g(3),g(4)\} = \{3,4,5\} \\ D(2,5,g) &=& ∀b∈\{2,\ldots,4\}.g(b+1)\not∈C(2,b,g) \\ &=& ∀b∈\{2,3,4\}. g(b+1)\not∈C(2,b,g) \\ &=& (g(2+1)\not∈C(2,2,g)) ∧ \\ && (g(3+1)\not∈C(2,3,g)) ∧ \\ && (g(4+1)\not∈C(2,4,g)) \\ &=& g(3)\not∈\{3\} ∧ g(4)\not∈\{3,4\} ∧ g(5)\not∈\{3,4,5\} \\ &=& 4\not∈\{3\} ∧ 5\not∈\{3,4\} ∧ 6\not∈\{3,4,5\} \\ &=& \V \\ \end{array} $ \msk % «gab-4» (to ".gab-4") 4a) $∀a∈\Z.\Impar(a)→∃b∈\Z.a=b+(b+1)$ 4b) \begin{minipage}[t]{27em} \par 1) Suponha $a∈\Z$, $\Impar(a)$ \par 2) Então $\Impar(a)$ \par 3) Então $∃k∈\Z.2k+1=a$ \par 4) Suponha $k∈\Z$, $2k+1=a$ \par 5) Então $a=k+(k+1)$ \par 6) Então $∃b∈\Z.a=b+(b+1)$ \quad ($b:=k$) \par 7) Então $∃b∈\Z.a=b+(b+1)$ \hfill (usa 3, fecha 4) \par 8) Então $\Impar(a)→∃b∈\Z.a=b+(b+1)$ \hfill (fecha 2) \par 9) Então $∀a∈\Z.\Impar(a)→∃b∈\Z.a=b+(b+1)$ \hfill (fecha 1) \par \end{minipage} \newpage % «gab-5» (to ".gab-5") 5a) $f(0)=0$, $f(1)=10$, $f(2)=200$, $f(3)=3000$, \quad\;\; $P(0)=\F$, $P(1)=\F$, $P(2)=\V$, $P(3)=\F$ 5b) $\sum_{i=2}^6 f(i) = 6543200$, $\sum_{i=1}^4 f(2i) = 806040200$. 5c) Seja $s(k) = \sum_{i=0}^{k-1} 9·10^i$. Então: $\begin{array}{rclclcl} s(3) &=& \sum_{i=0}^{3-1} 9·10^i &=& 9·10^0 + 9·10^1 + 9·10^2 \\&=& g(3) \\ s(4) &=& \sum_{i=0}^{4-1} 9·10^i &=& 9·10^0 + 9·10^1 + 9·10^2 + 9·10^3 \\&=& g(4) \\ s(5) &=& \sum_{i=0}^{5-1} 9·10^i &=& 9·10^0 + 9·10^1 + 9·10^2 + 9·10^3 + 9·10^4 \\&=& g(5) \\ \end{array} $ 5d) $\begin{array}[t]{l} s(-2) = \sum_{i=0}^{-2-1} 9·10^i = 0 \\ s(-1) = \sum_{i=0}^{-1-1} 9·10^i = 0 \\ s(0) = \sum_{i=0}^{0-1} 9·10^i = 0 \\ \end{array} $ 5e) $\begin{array}[t]{l} R(2) = (s(2)=h(2)) = (99=10^2-1) = \V \\ R(1) = (s(1)=h(1)) = ( 9=10^1-1) = \V \\ R(0) = (s(0)=h(0)) = ( 0=10^0-1) = \V \\ R(-1) = (s(-1)=h(-1)) = ( 0=10^{-1}-1) = \F \\ \end{array} $ 5f) \begin{minipage}[t]{27em} \par 1) Suponha $k∈\N^+$ \par 2) Suponha $Q(k)$ \par 3) Então $g(k)=h(k)$ \par 4) Então $g(k+1)-g(k)= 9·10^k$ \par 5) Então $h(k+1) = 10^{k+1}-1$ \par 6) Então $\begin{array}[t]{rcl} h(k+1)-h(k) &=& (10^{k+1}-1) - (10^k-1) \\ &=& 10·10^k - 10^k \\ &=& 9·10^k \\ \end{array}$ \par 7) Então $g(k+1)-g(k) = h(k+1)-h(k)$ \par 8) Então $g(k)+(g(k+1)-g(k)) = h(k)+(h(k+1)-h(k))$ \par 9) Então $g(k+1)=h(k+1)$ \par 10) Então $Q(k+1)$ \par 11) Então $Q(k)→Q(k+1)$ \hfill (fecha 2) \par \end{minipage} \end{document} % Local Variables: % coding: utf-8-unix % End: