Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017sajl-mini.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017sajl-mini.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017sajl-mini.pdf")) % (defun e () (interactive) (find-LATEX "2017sajl-mini.tex")) % (defun u () (interactive) (find-latex-upload-links "2017sajl-mini")) % (find-xpdfpage "~/LATEX/2017sajl-mini.pdf") % (find-sh0 "cp -v ~/LATEX/2017sajl-mini.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017sajl-mini.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017sajl-mini.pdf % file:///tmp/2017sajl-mini.pdf % file:///tmp/pen/2017sajl-mini.pdf % http://angg.twu.net/LATEX/2017sajl-mini.pdf % % A sort-of-minimal file that can be compiled with the SAJL class % (for debugging). % %\documentclass{article} %\usepackage{pict2e} % (find-es "tex" "pict2e-no-suitable-driver") %\begin{document} %Hello %\end{document} %\documentclass[pdftex]{sajl} \documentclass[lualatex]{sajl} \volume{X} \issue{X} \year{20XX} \setcounter{page}{1} %\begin{document} %\end{document} \usepackage{latexsym,amssymb,amsfonts,amsmath} \usepackage{graphicx} \usepackage{array} % (find-es "tex" "array") %\usepackage{hyperref} % (find-es "tex" "hyperref") %\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %%\usepackage[latin1]{inputenc} %\usepackage{amsmath} %\usepackage{amsfonts} %\usepackage{amssymb} \def\pdfoutput{\outputmode} \def\pdfpagewidth{\pagewidth} \def\pdfpageheight{\pageheight} \usepackage{pict2e} % (find-es "tex" "pict2e-no-suitable-driver") %\usepackage{color} % (find-LATEX "edrx15.sty" "colors") %\usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} \usepackage{proof} % (find-dn6 "preamble6.lua" "preamble0") \input diagxy % (find-dn6 "preamble6.lua" "preamble0") %% %\usepackage{edrx17} % (find-angg "LATEX/edrx17.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrx17defs.tex % (find-LATEX "edrx17defs.tex") %\input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") %\input edrxgac2.tex % (find-LATEX "edrxgac2.tex") \def\Opens{\mathcal{O}} \catcode`→=13 \def→{\rightarrow} % (find-es "tex" "newtheorem") \newtheorem{definition}{Definition}[section] \newtheorem{theorem}[definition]{Theorem} \newtheorem{lemma}[definition]{Lemma} \newtheorem{proposition}[definition]{Proposition} \newtheorem{remark}[definition]{Remark} \newtheorem{remarks}[definition]{Remarks} \newtheorem{example}[definition]{Example} \newtheorem{examples}[definition]{Examples} \newtheorem{corollary}[definition]{Corollary} \newtheorem{myfigure}[definition]{Figure} % Edrx \newcommand{\negr}[1]{\boldsymbol{#1}} \newenvironment{proof}{\noindent\bf Proof. \rm}{\hfill $\negr{\blacksquare}$ \\} % _____ _ _ _ % |_ _(_) |_| | ___ % | | | | __| |/ _ \ % | | | | |_| | __/ % |_| |_|\__|_|\___| % % (find-LATEX "idarct/idarct-preprint.tex") % «title» (to ".title") \title{Planar HAs for Children}{Planar Heyting Algebras for Children} \author{E. Ochs}{Eduardo Ochs} \begin{document} \setlength{\extrarowheight}{1pt} \maketitle % _ _ _ _ % / \ | |__ ___| |_ _ __ __ _ ___| |_ % / _ \ | '_ \/ __| __| '__/ _` |/ __| __| % / ___ \| |_) \__ \ |_| | | (_| | (__| |_ % /_/ \_\_.__/|___/\__|_| \__,_|\___|\__| % % «abstract» (to ".abstract") \begin{abstract} This paper shows a way to interpret (propositional) intuitionistic logic {\sl visually} using finite Planar Heyting Algebras (that we call ``ZHAs''), that are certain subsets of $\Z^2$. We also show the connection between ZHAs and the familiar semantics for IPL where the truth-values are open sets in a finite topological space $(P,\Opens(P))$: every ZHA is an ``order topology on a 2-column graph''. In the second part of the paper we show how each closure operator $J:H→H$ on a ZHA $H⊆\Z^2$ corresponds to a) a way to ``slash'' $H$ using diagonal cuts, and b) a choice of a subset $S⊆P$; $J$ can then be recovered from the inclusion $f:S→P$ as a restriction map $f^*: \Opens(P)→\Opens(S)$ followed by a map $f_*: \Opens(S)→\Opens(P)$ that reconstructs the missing information ``in the biggest way possible''. When a mathematical paper is written ``for children'' this means either that it is written for people without lots of mathematical {\sl knowledge} or that it doesn't require mathematical {\sl maturity}; we follow the second, stronger, meaning of the term. ``Children'' for us means people who are not able to understand structures that are too abstract straight away, they need particular cases first --- and they also have trouble with infinite objects, and with theorems about things that they can't calculate: {\sl calculating} is much more basic for them than {\sl proving}. Writing ``for children'' makes us enforce a style where everything is constructive and finite and all the main examples are objects that are easy to draw explicitly. Closure operators on Heyting Algebras are very important on Topos Theory: they generate geometric morphisms and sheaves. This paper introduces several tools that can be used to explain some parts of Topos Theory to ``children'', but here we stop just before categories and toposes --- when we move to categories and (pre)sheaves we have to replace most of the `0's and `1's in our diagrams by sets. \end{abstract} \keywords{Heyting Algebras, Intuitionistic Logic, diagrammatic reasoning, geometric morphisms.} % _ _ _ __ % __| | ___ __| |_ __ __ _| |_ / /_ % / _` |/ _ \/ _` | '_ \ / _` | __| '_ \ % | (_| | __/ (_| | | | | (_| | |_| (_) | % \__,_|\___|\__,_|_| |_|\__,_|\__|\___/ % % «dednat6» (to ".dednat6") \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} \directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end % _ _ _ _ % _ __ (_) ___| |_ _ _ _ __ ___ __| | ___ | |_ ___ % | '_ \| |/ __| __| | | | '__/ _ \/ _` |/ _ \| __/ __| % | |_) | | (__| |_| |_| | | | __/ (_| | (_) | |_\__ \ % | .__/|_|\___|\__|\__,_|_| \___|\__,_|\___/ \__|___/ % |_| % % «picturedots» (to ".picturedots") % (find-LATEX "2016-2-GA-algebra.tex" "picturedots") % (find-LATEX "2016-2-GA-algebra.tex" "comprehension-gab") % (gaap 5) % \def\beginpicture(#1,#2)(#3,#4){\expr{beginpicture(v(#1,#2),v(#3,#4))}} \def\pictaxes{\expr{pictaxes()}} \def\pictdots#1{\expr{pictdots("#1")}} \def\picturedotsa(#1,#2)(#3,#4)#5{% \vcenter{\hbox{% \beginpicture(#1,#2)(#3,#4)% \pictaxes% \pictdots{#5}% \end{picture}% }}% } \def\picturedots(#1,#2)(#3,#4)#5{% \vcenter{\hbox{% \beginpicture(#1,#2)(#3,#4)% %\pictaxes% \pictdots{#5}% \end{picture}% }}% } % _ __ % __| | ___ / _|___ % / _` |/ _ \ |_/ __| % | (_| | __/ _\__ \ % \__,_|\___|_| |___/ % % «defs» (to ".defs") \def\sa{\rightsquigarrow} \def\BPM{\mathsf{BPM}} \def\WPM{\mathsf{WPM}} \def\ZHAG{\mathsf{ZHAG}} \def\catTwo{\mathbf{2}} %\def\Pts{\mathcal{P}} \def\calS{\mathcal{S}} \def\calI{\mathcal{I}} \def\calK{\mathcal{K}} \def\calV{\mathcal{V}} \def\und#1#2{\underbrace{#1}_{#2}} \def\subst#1{\left[\begin{array}{rcl}#1\end{array}\right]} \def\subst{\bsm} % (find-LATEXfile "2015planar-has.tex" "\\def\\Mop") \def\MP {\mathsf{MP}} \def\J {\mathsf{J}} \def\Mo {\mathsf{Mo}} \def\Mop {\mathsf{Mop}} \def\Sand{\mathsf{Sand}} \def\ECa {\mathsf{EC}{\&}} \def\ECv {\mathsf{EC}{∨}} \def\ECS {\mathsf{ECS}} \def\pdiag#1{\left(\diag{#1}\right)} \def\ltor#1#2{#1\_{\to}\_#2} \def\lotr#1#2{#1\_{\ot}\_#2} \def\Int{{\operatorname{int}}} \def\Int{{\operatorname{\mathsf{int}}}} \def\coInt{{\operatorname{\mathsf{coint}}}} %\def\Opens{{\mathcal{O}}} % \def\LC {\mathsf{LC}} \def\RC {\mathsf{RC}} \def\TCG{\mathsf{2CG}} \def\pile{\mathsf{pile}} \def\ltor#1#2{#1\_{\to}\_#2} \def\lotr#1#2{#1\_{\ot}\_#2} \def\ltol#1#2{#1\_{\to}#2\_} \def\rtor#1#2{\_#1{\to}\_#2} % \def\NoLcuts{\mathsf{No}λ\mathsf{cuts}} \def\NoYcuts{\mathsf{NoYcuts}} \def\astarcube{{\&}^*\mathsf{Cube}} \def\ostarcube{{∨}^*\mathsf{Cube}} \def\istarcube{{→}^*\mathsf{Cube}} \def\acz{{\&}^*\mathsf{C}_0} \def\ocz{{∨}^*\mathsf{C}_0} \def\icz{{→}^*\mathsf{C}_0} % \def\astarcuben{{\&}^*\mathsf{Cube}_\mathsf{n}} \def\ostarcuben{{∨}^*\mathsf{Cube}_\mathsf{n}} \def\istarcuben{{→}^*\mathsf{Cube}_\mathsf{n}} \def\astarcubev{{\&}^*\mathsf{Cube}_\mathsf{v}} \def\ostarcubev{{∨}^*\mathsf{Cube}_\mathsf{v}} \def\istarcubev{{→}^*\mathsf{Cube}_\mathsf{v}} % %\catcode`∧=13 \def∧{\mathop{\&}} \def\biggest {\mathsf{biggest}} \def\smallest{\mathsf{smallest}} \def\Cuts {\mathsf{Cuts}} \def\myresizebox#1{% \noindent\hbox to \textwidth{\hss \resizebox{1.0\textwidth}{!}{#1}% \hss} } % ___ _ _ _ _ % |_ _|_ __ | |_ ___ __| |_ _ ___| |_(_) ___ _ __ % | || '_ \| __/ _ \ / _` | | | |/ __| __| |/ _ \| '_ \ % | || | | | || (_) | (_| | |_| | (__| |_| | (_) | | | | % |___|_| |_|\__\___/ \__,_|\__,_|\___|\__|_|\___/|_| |_| % % «introduction» (to ".introduction") % (phsp 1 "introduction") \section*{Introduction} This paper shows a way to interpret (propositional) intuitionistic logic {\sl visually} (sec.\ref{prop-calc-ZHA}) using finite Planar Heyting Algebras (``ZHAs'', sec.\ref{ZHAs}), that are certain subsets of $\Z^2$. The ``for children'' of the title means ``for people without mathematical maturity'' (sec.\ref{children}). In sections \ref{topologies}--\ref{converting-ZHAs-2CAGs} we show the connection between ZHAs and the familiar semantics for IPL where the truth-values are open sets in a topological space $(P,\Opens(P))$, and in sections \ref{piccs-and-slashings}--\ref{slashings-are-poly} we discuss how each closure operator on a ZHA $H⊆\Z^2$ corresponds to a way to ``slash'' $H$ using diagonal cuts; in sections \ref{question-marks}--\ref{J-ops-as-adjunctions} we show how each closure operator correspond to a subset $S⊆P$, or rather to a restriction map $\Opens(P)→\Opens(S)$ followed by a map $\Opens(S)→\Opens(P)$ that reconstructs the missing information ``in the biggest way possible''. % The ``for children'' in the title has a precise, but somewhat % unusual, meaning, that is explained in sec.\ref{children}. % \bsk % ____ _ _ _ _ % / ___| |__ (_) | __| |_ __ ___ _ __ % | | | '_ \| | |/ _` | '__/ _ \ '_ \ % | |___| | | | | | (_| | | | __/ | | | % \____|_| |_|_|_|\__,_|_| \___|_| |_| % % «children» (to ".children") \section{Children} \label {children} % (phsp 2 "children") The ``children'' in the title of this paper means: ``people without mathematical maturity''. ``Children'' in this sense are not able to understand structures that are too abstract straight away, they need particular cases first; and they also don't deal well with infinite objects or with expressions like ``for every proposition $P(x)$'', or even with {\sl theorems}... \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: