Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017lucatelli-fibs.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017lucatelli-fibs.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017lucatelli-fibs.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2017lucatelli-fibs; makeindex 2017lucatelli-fibs")) % (defun e () (interactive) (find-LATEX "2017lucatelli-fibs.tex")) % (defun u () (interactive) (find-latex-upload-links "2017lucatelli-fibs")) % (find-xpdfpage "~/LATEX/2017lucatelli-fibs.pdf") % (find-sh0 "cp -v ~/LATEX/2017lucatelli-fibs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017lucatelli-fibs.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017lucatelli-fibs.pdf % file:///tmp/2017lucatelli-fibs.pdf % file:///tmp/pen/2017lucatelli-fibs.pdf % http://angg.twu.net/LATEX/2017lucatelli-fibs.pdf \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} \directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\bfX{\mathbf{X}} \def\bfB{\mathbf{B}} \def\bfA{\mathbf{A}} Definition 2.1. Let $P:\bfX→\bfB$ be a functor. A morphism $φ:Y→X$ in $\bfX$ over $u:=P(φ)$ is called {\sl cartesian} iff for all $v:K→J$ in $\bfB$ and $θ:Z→X$ with $P(θ)=u∘v$ there is a unique morphism $ψ:Z→Y$ with $P(ψ)=v$ and $θ=φ∘ψ$. % %D diagram fib-1 %D 2Dx 100 +20 +20 +20 +15 %D 2D 100 Z %D 2D -> %D 2D +20 Y -> X \bfX \bfA %D 2D %D 2D +10 K %D 2D -> %D 2D +20 J -> I \bfB %D 2D %D # ren ==> %D %D (( Z Y --> .plabel= b ψ %D Y X -> .plabel= b φ %D Z X -> .plabel= a θ %D %D K J -> .plabel= b v %D J I -> .plabel= b u %D K I -> .plabel= a u∘v %D %D \bfX \bfB -> .plabel= r P %D \bfX \bfA = %D )) %D enddiagram %D $$\pu \diag{fib-1} $$ It is clear then: Lemma: Let $P:\bfA→\bfB$ be a functor. A morphism $φ:Y→X$ of $\bfA$ is cartesian if and only if $(\bfA/X)(-,φ) ≅ (\bfB/P(X))(P(-),P(φ))$. (or?...) Lemma: Let $P:\bfX→\bfB$ be a functor. A morphism $φ:Y→X$ of $\bfX$ is cartesian if and only if $(\bfX/X)(-,φ) ≅ (\bfB/P(X))(P(-),P(φ))$. \bsk \bsk Definition 2.2. $P:\bfX→\bfB$ is a {\sl fibration} or {\sl category fibred over $\bfB$} iff for all $u:J→I$ in $\bfB$ and $X∈P(I)$ there is a cartesian arrow $φ:Y→X$ over $u$ called a {\sl cartesian lifting} of $X$ along $u$. Thereby: Theorem: $P:\bfA→\bfB$ is a fibration if and only if for every $X$ of $\bfA$, $P:\bfA/X→\bfB/P(X)$ is surjective on objects and has a fully faithful right adjoint (the ``cartesian lifting''). Proof: in fact, both cases happen if and only if for each $X$ of $\bfA$ and $u$ of $\bfB/P(X)$, there is $\overline{u}$ such that $(\bfA/X)(-,\overline{u}) ≅ (\bfB/P(X))(P(-),u)$ and $P(\overline{u})=u$. %D diagram adj %D 2Dx 100 +40 %D 2D 100 A0 A1 %D 2D %D 2D +20 A2 A3 %D 2D %D 2D +20 A4 A5 %D 2D %D ren A0 A1 ==> (P(Z),P(θ)) (Z,θ) %D ren A2 A3 ==> (J,u) (Y,φ) %D ren A4 A5 ==> \bfB/P(X) \bfA/X %D %D (( A0 A1 <-| %D A2 A3 |-> %D A0 A2 -> .plabel= l v %D A1 A3 -> .plabel= r ψ %D A4 A5 <- sl^ .plabel= a P %D A4 A5 -> sl_ .plabel= b \text{(c.l.)} %D )) %D enddiagram %D $$\pu \diag{adj} $$ \end{document} % Local Variables: % coding: utf-8-unix % End: