Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017ebl-abs.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017ebl-abs.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017ebl-abs.pdf")) % (defun e () (interactive) (find-LATEX "2017ebl-abs.tex")) % (defun u () (interactive) (find-latex-upload-links "2017ebl-abs")) % (find-xpdfpage "~/LATEX/2017ebl-abs.pdf") % (find-pdf-text "~/LATEX/2017ebl-abs.pdf") % (find-sh0 "cp -v ~/LATEX/2017ebl-abs.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017ebl-abs.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017ebl-abs.pdf % file:///tmp/2017ebl-abs.pdf % file:///tmp/pen/2017ebl-abs.pdf % http://angg.twu.net/LATEX/2017ebl-abs.pdf % \documentclass[oneside]{book} % %\usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") % %\usepackage[latin1]{inputenc} % \usepackage{amsmath} % \usepackage{amsfonts} % \usepackage{amssymb} % %\usepackage{pict2e} % %\usepackage{color} % (find-LATEX "edrx15.sty" "colors") % %\usepackage{colorweb} % (find-es "tex" "colorweb") % %\usepackage{tikz} % % % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") % \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") % \input edrxchars.tex % (find-LATEX "edrxchars.tex") % \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") % \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % % % \begin{document} % \catcode`\^^J=10 % \directlua{dednat6dir = "dednat6/"} % \directlua{dofile(dednat6dir.."dednat6.lua")} % \directlua{texfile(tex.jobname)} % \directlua{verbose()} % %\directlua{output(preamble1)} % \def\expr#1{\directlua{output(tostring(#1))}} % \def\eval#1{\directlua{#1}} % \def\pu{\directlua{pu()}} % % \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") % \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") % %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \documentclass{book} \usepackage[colorlinks]{hyperref} \begin{document} {\bf Intuitionistic Propositional Logic For Children and Meta-Children, or: How Archetypal Are Finite Planar Heyting Algebras?} \medskip I've been using the expression ``for children'' in titles for some years, and with time it acquired a precise, though unusual, sense. ``Children'' are ``people without mathematical maturity'', where these are the main aspects of mathematical maturity: ableness to 1) handle abstract mathematical structures and 2) infinite objects; 3) work axiomatically, 4) generalize, and 5) particularize. Some techniques for creating versions ``for children'' of maths ``for adults'' are described in [1]; the main one is doing two parallel diagrams, one for the general case and another one for a particular, hopefully ``archetypal'' case. Finite, planar Heyting Algebras (``ZHA''s) are very good tools for teaching Intuitionistic Propositional Logic (IPL) to children: most non-theorems of IPL have countermodels on ZHAs that are very easy to understand visually, and children prefer to understand tautologies and non-tautologies first, and deductive systems later. ZHAs are archetypal among Heyting Algebras, but in a sense of ``archetypal'' that fits only the loosest definitions in [1], sec.16. ``Meta-children'' are people who want to study the relation between mathematics ``for children'' and ``for adults'' and produce (meta)mathematics for adults from that. The presentation will be mostly about teaching ZHAs and closure operators to ``children'', with one result for meta-children in the end: that this new sense of archetypalness can be formalized using comparisons of partial orders ([2], last sections). \bigskip [1]: Ochs, E.: {\sl Internal Diagrams and Archetypal Reasoning in Category Theory}. Logica Universalis, 2013. [2]: Ochs, E: {\sl Intuitionistic Logic for Children, or: Planar Heyting Algebras for Children}. Preprint, 2017. \medskip Eduardo Ochs --- UFF eduardoochs@gmail.com Home page: \url{http://angg.twu.net/math-b.html} \end{document} % this: let D be the diagram for the partial order on positive % modalities in S4 from Chellas's {\sl Modal Logic}, p.149; let % $(W,R)$ be the reflexive closure of the graph $1→2←3→4←5 6↔7$ and % let $v(P):=\{2,5,6\}$. Evaluate the nodes of $D$ in the Kripke model % $(W,R,v)$, and look the partial order of the values --- it is the % same as $D$. % ZHAs are archetypal among HAs, and ZHAs slashed by diagonal cuts are % archetypal among HAs with closure operators, but in a sense of % ``archetypal'' somewhat different from [1], that fits only the loose % definition in sec.16. % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % End: