Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017cwm.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017cwm.tex" :end)) % (defun d () (interactive) (find-pdf-page "~/LATEX/2017cwm.pdf")) % (defun d () (interactive) (find-pdftools-page "~/LATEX/2017cwm.pdf")) % (defun e () (interactive) (find-LATEX "2017cwm.tex")) % (defun u () (interactive) (find-latex-upload-links "2017cwm")) % (find-xpdfpage "~/LATEX/2017cwm.pdf") % (find-sh0 "cp -v ~/LATEX/2017cwm.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017cwm.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017cwm.pdf % file:///tmp/2017cwm.pdf % file:///tmp/pen/2017cwm.pdf % http://angg.twu.net/LATEX/2017cwm.pdf % % (defun fo () (interactive) (search-forward "% «") (eek "C-a <down>")) % «.thislinetag» (to "thislinetag") % % «.intro» (to "intro") % «.logica-l» (to "logica-l") % % «.2020-universal-arrows» (to "2020-universal-arrows") % «.hom» (to "hom") % «.comma» (to "comma") % «.comma-2» (to "comma-2") % «.universals» (to "universals") % «.universal-arrow-c-to-S» (to "universal-arrow-c-to-S") % «.universal-arrow-S-to-c» (to "universal-arrow-S-to-c") % «.universal-element» (to "universal-element") % «.yoneda-behind» (to "yoneda-behind") % «.yoneda-behind-2» (to "yoneda-behind-2") % «.yoneda» (to "yoneda") % «.yoneda-L» (to "yoneda-L") % «.yoneda-1» (to "yoneda-1") % «.yoneda-2» (to "yoneda-2") % «.yoneda-GF» (to "yoneda-GF") % «.adjoints» (to "adjoints") % «.adjoints-2» (to "adjoints-2") % «.adjoints-interdef-1» (to "adjoints-interdef-1") % «.adjoints-interdef-2» (to "adjoints-interdef-2") % «.monads» (to "monads") % «.monads-algebras» (to "monads-algebras") % «.monads-examples» (to "monads-examples") % «.monads-examples-2» (to "monads-examples-2") % «.kan-1» (to "kan-1") % «.kan-2» (to "kan-2") % «.kan-236» (to "kan-236") % \documentclass[oneside,12pt]{article} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") \usepackage{proof} % For derivation trees ("%:" lines) \input diagxy % For 2D diagrams ("%D" lines) \xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dofile "dednat6load.lua"} % (find-LATEX "dednat6load.lua") \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \def\Nat{\text{Nat}} \def\Id {\text{Id}} \def\Sel{\text{S}} \def\mtnto{\ton{·}} \def\nameof#1{\ulcorner#1\urcorner} % «thislinetag» (to ".thislinetag") %L -- (find-es "luatex" "thislinetag") %L -- (find-LATEX "dednat6/texfile.lua" "TexFile") %L -- (find-LATEX "dednat6/block.lua" "TexLines") %L thisline = function (n) return tf.lines[tex.inputlineno - (n or 0)] end %L thisline = function (n) return texlines[tex.inputlineno - (n or 0)] end %L thislinetag = function (n) %L local line = thisline(n) %L local tag = line:match("%% +[\128-\255]+([!-~]*)[\128-\255]+") %L if not tag then error("No tag in line "..tex.inputlineno) end %L return tag %L end %L \def\thislinetag{\expr{thislinetag()}} \def\mylabel{\label{\thislinetag}} \def⊙{\thislinetag} \def⊙{\mylabel} \pu \def\Frob {\mathsf{Frob}} \def\Frobnat {\mathsf{Frob}^\nat} % «intro» (to ".intro") % (find-idarct0file "2010diags-body.tex" "mental-space") {\setlength{\parindent}{0em} {\bf Notes on notation: CWM} Eduardo Ochs, 2017 Version at the bottom of the page. eduardoochs@gmail.com \url{http://angg.twu.net/LATEX/2017cwm.pdf} \url{http://angg.twu.net/math-b.html\#notes-on-notation} } \bsk From \url{http://angg.twu.net/math-b.html\#idarct}: % \begin{quotation} Different people have different measures for ``mental space''; someone with a good algebraic memory may feel that an expression like {$\Frobnat: Σ_f(P∧f^*Q) \xton{\cong} Σ_fP∧Q$} is easy to remember, while I always think diagramatically, and so what I do is that I remember this diagram [...] and I reconstruct the formula from it. \end{quotation} These are very informal notes showing my favourite ways to draw the ``missing diagrams'' in MacLane's {\sl Categories for the Working Mathematician}, and my favourite choices of letters for them. Work in progress changing often, contributions and chats very welcome, etc. I am also doing something similar for parts of {\sl Sketches of an Elephant} --- see the link ``\#notes-on-notation'' above. \msk The good parts are the one on Yoneda (pp.\pageref{yoneda-behind}--\pageref{yoneda-L}), the ``interdefinabilities'' for some components of adjunctions (pp.\pageref{adjoints-interdef-1}--\pageref{adjoints-interdef-2}), and the part on monads (pp.\pageref{monads}--\pageref{monads-examples-2}). The rest is a mess. \newpage % «logica-l» (to ".logica-l") % Announcement (2017ago06): % https://mail.google.com/mail/ca/u/0/#search/yoneda/15dba04959636fec % Subj: Fazendo os diagramas implícitos no CWM e outros livros de Categorias % % Migs, % % eu estou começando um projeto - totalmente informal - que talvez % interesse a algumas pessoas daqui, e que por enquanto eu não me atrevo % a anunciar em nenhuma lista menos beginner-friendly... % % Uma das minhas áreas de pesquisa é Categorias e eu até já publiquei um % artigo BEM bacana sobre isso, mas eu sou praticamente autodidata, o % meu conhecimento da área tem buracos ridiculamente grandes, e eu nunca % soube muito bem COMO estudar os livros de Categorias... % % Há umas duas semanas atrás me ocorreu que eu deveria pegar alguns % livros de Categorias, entender muito bem a notação que eles usam, % fazer os diagramas que estão implícitos no texto (nas posições que se % tornaram canônicas pra mim - por exemplo, numa adjunção L-|R o funtor % L vai pra esquerda, o R vai pra direita, e os morfismos em cada % categoria vão pra baixo; universais e Yoneda usam convenções baseadas % nessa), definir direito as construções que no livro são tratadas como % "óbvias" (usando notação lambda), descobrir as convenções do livro % para nomear esses funtores e transformações naturais "óbvios" quando % eles não são nomeados, e assim por diante. % % Estou começando com o Categories for the Working Mathematician, do % MacLane, e depois que eu terminar a parte de mônadas do CWM pretendo % ir pro Sketches of an Elephant, do Johnstone. Tem vários outros livros % e artigos pros quais eu gostaria de fazer o mesmo, mas por enquanto a % prioridade deles é mais baixa. % % Tou pondo os diagramas que eu tou fazendo pro CWM aqui: % % http://angg.twu.net/LATEX/2017cwm.pdf % % Ainda não escrevi nem introdução, nem guidelines, nem várias outras % coisas. Tudo ainda é muito preliminar. % % Se alguém quiser participar ou conversar a respeito pode falar comigo % ou por aqui ou em privado. Tou typesetteando os diagramas com um % pacote que eu mesmo fiz e que não é nada user-friendly (por enquanto % =/), mas dá pra gente interagir usando outros pacotes ou mesmo fotos % de diagramas escritos à mão. % % [[]], % Eduardo Ochs =) % http://angg.twu.net/math-b.html % http://angg.twu.net/ % % % % % P.S.: Quando eu estudei o CWM, o Elephant e outros livros de % Categorias eu acabava traduzindo as idéias deles direto pra outras % notações - o que hoje em dia eu reconheço que foi uma idéia de jerico % =( -, sem nunca me dar ao trabalho de fazer "dicionários de diagramas" % detalhados que esclarecessem a tradução entre as notações. % _ % | |__ ___ _ __ ___ % | '_ \ / _ \| '_ ` _ \ % | | | | (_) | | | | | | % |_| |_|\___/|_| |_| |_| % % «hom» (to ".hom") % (find-cwm2page (+ 9 34) "2. Contravariance and Opposites") % (find-cwm2text (+ 9 34) "2. Contra variance and Opposites") % ____ % / ___|___ _ __ ___ _ __ ___ __ _ % | | / _ \| '_ ` _ \| '_ ` _ \ / _` | % | |__| (_) | | | | | | | | | | | (_| | % \____\___/|_| |_| |_|_| |_| |_|\__,_| % % «comma» (to ".comma") % (find-cwm2page (+ 10 45) "6. Comma Categories") % (find-cwm2text (+ 10 45) "6. Comma Categories") % (cw7p 2 "comma") % (cw7 "comma") \par CWM2 \par II. Constructions on Categories \par p.45: 6. Comma Categories (in my notation) \bsk The most general case is with functors $\catA \ton{F} \catB \otn{G} \catC$. The comma category $(F↓G)$ is % %D diagram my-comma-1 %D 2Dx 100 +25 +30 +25 +30 %D 2D 100 B1 |--> B2 ---> B3 <--| B4 C1 %D 2D || || | | | %D 2D || || v v v %D 2D +25 B5 |--> B6 ---> B7 <--| B8 C2 %D 2D %D 2D +15 B9 ---> B10 == B11 <-- B12 C3 %D 2D %D ren B1 B2 B3 B4 ==> A FA GC C %D ren B5 B6 B7 B8 ==> A' FA' GC' C' %D ren B9 B10 B11 B12 ==> \catA \catB \catB \catC %D ren C1 C2 C3 ==> (A,h,C) (A',h',C') (F↓G) %D %D (( B1 B2 |-> B2 B3 -> .plabel= a h B3 B4 <-| %D B1 B5 -> .plabel= l α B2 B6 -> .plabel= l Fα B3 B7 -> .plabel= r Fγ B4 B8 -> .plabel= r γ %D B5 B6 |-> B6 B7 -> .plabel= a h' B7 B8 <-| %D B9 B10 -> .plabel= a F B10 B11 = B11 B12 <- .plabel= a G %D C1 C2 -> .plabel= r (α,γ) C3 place %D )) %D enddiagram %D $$\pu \diag{my-comma-1} $$ The obtain the other 8 cases I replace the functors $F$ and $G$ by $\Id_\catB$ or $\Sel_B$, where $\Sel_B:1→\catB$ is the functor that ``selects'' the object $B$ --- it takes the only object $•∈1$ to $B$. For example, $(\Sel_B,\Id_\catB)$ is: % %D diagram my-comma-2 %D 2Dx 100 +25 +30 +25 +30 %D 2D 100 B1 |--> B2 ---> B3 <--| B4 C1 %D 2D || || | | | %D 2D || || v v v %D 2D +25 B5 |--> B6 ---> B7 <--| B8 C2 %D 2D %D 2D +15 B9 ---> B10 == B11 <-- B12 C3 %D 2D %D ren B1 B2 B3 B4 ==> • B B' B' %D ren B5 B6 B7 B8 ==> • B B'' B'' %D ren B9 B10 B11 B12 ==> \catA \catB \catB \catB %D ren C1 C2 C3 ==> (•,h,B') (•,h',B'') (\Sel_B↓\Id_\catB) %D %D (( B1 B2 |-> B2 B3 -> .plabel= a h B3 B4 <-| %D B1 B5 = B2 B6 = B3 B7 -> .plabel= r β B4 B8 -> .plabel= r β %D B5 B6 |-> B6 B7 -> .plabel= a h' B7 B8 <-| %D B9 B10 -> .plabel= a \Sel_B B10 B11 = B11 B12 <- .plabel= a \Id_\catB %D C1 C2 -> .plabel= r (\id_•,β) C3 place %D )) %D enddiagram %D $$\pu \diag{my-comma-2} $$ Shorthands: 1) Use `$\_$' in the pairs and triples in the positions where the information there is trivial --- $(\id_•,β):(•,h,B')→(•,h',B'')$ becomes $(\_,β):(\_,h,B')→(\_,h',B'')$. 2) Use $B$ instead of $\Sel_B$. 3) Use $\catB$ instead of $\Id_B$. \msk The correspondence with the names in CWM is: The comma category $(F↓G)$ The category $(B↓\catB)$ of objects under $B$ The category $(\catB↓B)$ of objects over $B$ The category $(B↓G)$ of objects $G$-under $B$ The category $(F↓B)$ of objects $F$-over $B$ \msk The nine cases: % $$\begin{array}{ccc} (F↓G) & (F↓\catB) & (F↓B) \\ (\catB↓G) & (\catB↓\catB) & (\catB↓B) \\ (B↓G) & (B↓\catB) & (B↓B') \\ \end{array} \quad ⇒ \quad \begin{array}{ccc} (F↓G) & (F↓\Id_\catB) & (F↓\Sel_B) \\ (\Id_\catB↓G) & (\Id_\catB↓\Id_\catB) & (\Id_\catB↓B) \\ (\Sel_B↓G) & (\Sel_B↓\Id_\catB) & (\Sel_B↓\Sel_{B'}) \\ \end{array} $$ \newpage % ____ % / ___|___ _ __ ___ _ __ ___ __ _ % | | / _ \| '_ ` _ \| '_ ` _ \ / _` | % | |__| (_) | | | | | | | | | | | (_| | % \____\___/|_| |_| |_|_| |_| |_|\__,_| % % «comma-2» (to ".comma-2") % (cw7p 3 "comma-2") % (cw7 "comma-2") % (find-cwm2page (+ 10 45) "6. Comma Categories") % (find-cwm2text (+ 10 45) "6. Comma Categories") \par CWM2 \par II. Constructions on Categories \par p.45: 6. Comma Categories \bsk MacLane uses a notation with lots of names and shorthands. \msk Fix $C$, $b∈C$. The category $(b↓C)$ of {\sl objects under $b$} has objects like $\ang{f,c}$, where $c∈C$ and $f:b→c$. Fix $C$, $a∈C$. The category $(C↓a)$ of {\sl objects over $a$} has objects like $\ang{c,f}$, where $c∈C$ and $f:c→a$. Fix $C$, $D$, $b∈C$. $S:D→C$. The category $(b↓S)$ of {\sl objects $S$-under $b$} has objects like $\ang{f,d}$, where $d∈D$ and $f:b→Sd$. Fix $C$, $E$, $a∈C$. $T:E→C$. The category $(T↓a)$ of {\sl objects $T$-over $a$} has objects like $\ang{f,d}$, where $d∈D$ and $f:b→Sd$. Fix $C$, $D$, $E$, and $S$, $T$ with $E \ton{T} C \otn{S} D$. The {\sl comma category $(T,S)$} has objects like $\ang{e,d,f}$, where $d∈D$, $e∈E$ and $f:Te→Sd$. \msk An object $b∈C$ may be regarded as a functor $b:1→C$ with image $b$. A category $C$ may be regarded as the identity functor $C→C$. We have: $(b↓C)$ has objects like $\ang{*,c,f}$, where $c∈C$ and $f:b→c$. $(C↓a)$ has objects like $\ang{c,*,f}$, where $c∈C$ and $f:c→a$. $(b↓S)$ has objects like $\ang{*,d,f}$, where $d∈D$ and $f:b→Sd$. $(T↓a)$ has objects like \newpage % _ _ _ _ % | | | |_ __ (_)_ _____ _ __ ___ __ _| |___ % | | | | '_ \| \ \ / / _ \ '__/ __|/ _` | / __| % | |_| | | | | |\ V / __/ | \__ \ (_| | \__ \ % \___/|_| |_|_| \_/ \___|_| |___/\__,_|_|___/ % % «universals» (to ".universals") % «universal-arrow-c-to-S» (to ".universal-arrow-c-to-S") % (cw7p 4 "universal-arrow-c-to-S") % (cw7 "universal-arrow-c-to-S") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 55) "III. Universals and Limits") % (find-cwm2text (+ 9 55) "III. Universals and Limits") % (find-cwm2page (+ 9 55) "1. Universal Arrows") % (find-cwm2text (+ 9 55) "1. Universal Arrows") % (cw7p 4 "universal-arrow-c-to-S") \par CWM2 \par III. Universals and Limits \par p.55: Definition: universal arrow from $c$ to $S$ \bsk Fix $D$, $C$, $S:D→C$, $r∈D$, $c∈C$. Then we have functors $D(r,-):D→\Set$ and $C(c,S-):D→\Set$. Every $u:c→Sr$ induces a NT % $\begin{array}[t]{rcrcl} (S-∘u) &:& D(r,-) & \mtnto & C(c,S-), \\ (S-∘u)d &:& D(r,d) & \mtnto & C(c,Sd) \\ && f' & \mto & Sf'∘u. \\ \end{array} $ \msk We say that a pair $\ang{r,u}$ is a {\sl universal arrow from $c$ to $S$} when $(S-∘u)$ (i.e., $λd.λf'.Sf'∘u$) is a natural isomorphism, i.e., when every $(S-∘u)d$ (i.e., $λf'.Sf'∘u$) is a bijection. In MacLane's and in my notation: % %D diagram universal-from-c-to-S %D 2Dx 100 +45 %D 2D 100 B1 %D 2D | %D 2D v %D 2D +20 B2 |-> B3 %D 2D | | %D 2D v v %D 2D +20 B4 |-> B5 %D 2D %D 2D +20 A0 --> A1 %D 2D %D 2D +20 C0 --> C1 %D 2D %D 2D +20 D0 --> D1 %D %D ren A0 A1 ==> D C %D ren B1 B2 B3 B4 B5 ==> c r Sr d Sd %D ren C0 C1 ==> D(r,-) C(c,S-) %D ren D0 D1 ==> D(r,d) C(c,Sd) %D %D (( A0 A1 -> .plabel= a S %D B1 B3 -> .plabel= r u %D B2 B3 |-> .plabel= a S %D B2 B4 -> .plabel= l f' B3 B5 -> .plabel= r Sf' %D B4 B5 |-> .plabel= b S %D B1 B5 -> .plabel= r \sm{f=\\Sf'∘u} .slide= 20pt %D C0 C1 -> .plabel= a (S-∘u) %D C0 C1 -> .plabel= b (\cong) %D D0 D1 -> .plabel= a (S-∘u)d %D D0 D1 -> .plabel= b (\cong) %D )) %D enddiagram % %D diagram universal-from-c-to-S-my %D 2Dx 100 +45 %D 2D 100 B1 %D 2D | %D 2D v %D 2D +20 B2 |-> B3 %D 2D | | %D 2D v v %D 2D +20 B4 |-> B5 %D 2D %D 2D +20 A0 --> A1 %D 2D %D 2D +20 C0 --> C1 %D 2D %D 2D +20 D0 --> D1 %D %D ren A0 A1 ==> \catB \catA %D ren B1 B2 B3 B4 B5 ==> A B RB B' RB' %D ren C0 C1 ==> (B,-) (A,R-) %D ren D0 D1 ==> (B,B') (A,RB') %D %D (( A0 A1 -> .plabel= a R %D B1 B3 -> .plabel= r u %D B2 B3 |-> %D B2 B4 -> .plabel= l β B3 B5 -> .plabel= r Rβ %D B4 B5 |-> %D B1 B5 -> .plabel= r \sm{g=\\u;Rβ} .slide= 20pt %D C0 C1 -> %D D0 D1 -> %D )) %D enddiagram %D $$\pu \diag{universal-from-c-to-S} \qquad \diag{universal-from-c-to-S-my} $$ \msk As comma categories (universal arrows are initial in comma categories): % %D diagram univ-c-to-S-comma %D 2Dx 100 +20 +25 +20 +25 %D 2D 100 B1 |--> B2 ---> B3 <--| B4 C1 %D 2D || || | | | %D 2D || || v v v %D 2D +25 B5 |--> B6 ---> B7 <--| B8 C2 %D 2D %D 2D +15 B9 ---> B10 == B11 <-- B12 C3 %D 2D %D ren B1 B2 B3 B4 ==> * c Sr r %D ren B5 B6 B7 B8 ==> * c Sd d %D ren B9 B10 B11 B12 ==> 1 C C D %D ren C1 C2 C3 ==> 〈r,u〉 〈d,f〉 (c↓S) %D %D (( B1 B2 |-> B2 B3 -> .plabel= a u B3 B4 <-| %D B5 B6 |-> B6 B7 -> .plabel= a f B7 B8 <-| %D B1 B5 = B2 B6 = B3 B7 -> .plabel= r Sf' B4 B8 -> .plabel= r f' %D B9 B10 -> .plabel= a c B10 B11 = B11 B12 <- .plabel= a S %D C1 C2 -> .plabel= r f' C3 place %D )) %D enddiagram %D %D diagram univ-c-to-S-comma-my %D 2Dx 100 +20 +25 +20 +25 %D 2D 100 B1 |--> B2 ---> B3 <--| B4 C1 %D 2D || || | | | %D 2D || || v v v %D 2D +25 B5 |--> B6 ---> B7 <--| B8 C2 %D 2D %D 2D +15 B9 ---> B10 == B11 <-- B12 C3 %D 2D %D ren B1 B2 B3 B4 ==> • A RB B %D ren B5 B6 B7 B8 ==> • A RB' B' %D ren B9 B10 B11 B12 ==> 1 \catA \catA \catB %D ren C1 C2 C3 ==> (\_,u,B) (\_,g,B') (\Sel_A↓R) %D %D (( B1 B2 |-> B2 B3 -> .plabel= a u B3 B4 <-| %D B5 B6 |-> B6 B7 -> .plabel= a g B7 B8 <-| %D B1 B5 = B2 B6 = B3 B7 -> .plabel= r Rβ B4 B8 -> .plabel= r β %D B9 B10 -> .plabel= a \Sel_A B10 B11 = B11 B12 <- .plabel= a R %D C1 C2 -> .plabel= r (\_,β) C3 place %D )) %D enddiagram %D $$\pu \diag{univ-c-to-S-comma} \qquad \diag{univ-c-to-S-comma-my} $$ \newpage % _ _ _ _ ____ % | | | |_ __ (_)_ _____ _ __ ___ __ _| | |___ \ % | | | | '_ \| \ \ / / _ \ '__/ __|/ _` | | __) | % | |_| | | | | |\ V / __/ | \__ \ (_| | | / __/ % \___/|_| |_|_| \_/ \___|_| |___/\__,_|_| |_____| % % «universal-arrow-S-to-c» (to ".universal-arrow-S-to-c") % (cw7p 5 "universal-arrow-S-to-c") % (cw7 "universal-arrow-S-to-c") % (find-cwm2page (+ 9 58) "1. Universal Arrows") % (find-cwm2text (+ 9 58) "1. Universal Arrows") \par CWM2 \par III. Universals and Limits \par p.58: Definition: universal arrow from $S$ to $c$ \bsk Fix $D$, $C$, $S:D→C$, $r∈C$, $c∈C$. Then we have functors $D(-,r):D^\op→\Set$ and $C(S-,c,):D^\op→\Set$. Every $v:Sr→c$ induces a NT % $\begin{array}[t]{rcrcl} (v∘S-) &:& D(-,r) & \mtnto & C(S-,c), \\ (v∘S-)d &:& D(d,r) & \mtnto & C(Sd,c) \\ && f' & \mto & v∘Sf'. \\ \end{array} $ \msk We say that a pair $\ang{r,v}$ is a {\sl universal arrow from $S$ to $c$} when $(v∘S-)$ (i.e., $λd.λf'.v∘Sf'$) is a natural isomorphism, i.e., when every $(v∘S-)d$ (i.e., $λf'.v∘Sf'$) is a bijection. %D diagram universal-from-S-to-c %D 2Dx 100 +45 %D 2D 100 A0 <-- A1 %D 2D %D 2D +20 B0 <-| B1 %D 2D | | %D 2D v v %D 2D +20 B2 <-| B3 %D 2D | %D 2D v %D 2D +20 B4 %D 2D %D 2D +20 C0 <-- C1 %D 2D %D 2D +20 D0 <-- D1 %D %D ren A0 A1 ==> C D %D ren B0 B1 B2 B3 B4 ==> Sd d Sr r c %D ren C0 C1 ==> C(S-,c) D(-,r) %D ren D0 D1 ==> C(Sd,c) D(d,r) %D %D (( A0 A1 <- .plabel= a S %D B0 B1 <-| .plabel= a S %D B0 B2 -> .plabel= l Sf' B1 B3 -> .plabel= r f' %D B2 B3 <-| .plabel= a S %D B2 B4 -> .plabel= l v %D B0 B4 -> .plabel= l v∘Sf' .slide= -20pt %D C0 C1 <- .plabel= a (S-∘u) %D C0 C1 <- .plabel= b (\cong) %D D0 D1 <- .plabel= a (S-∘u)d %D D0 D1 <- .plabel= b (\cong) %D )) %D enddiagram %D $$\pu \diag{universal-from-S-to-c} $$ \newpage % _ _ _ _ _ _ % | | | |_ __ (_)_ _____ _ __ ___ __ _| | ___| | |_ % | | | | '_ \| \ \ / / _ \ '__/ __|/ _` | | / _ \ | __| % | |_| | | | | |\ V / __/ | \__ \ (_| | | | __/ | |_ % \___/|_| |_|_| \_/ \___|_| |___/\__,_|_| \___|_|\__| % % «universal-element» (to ".universal-element") % (cw7p 6 "universal-element") % (cw7 "universal-element") % (find-cwm2page (+ 9 57) "universal element") % (find-cwm2text (+ 9 57) "universal element") \par CWM2 \par III. Universals and Limits \par p.57: universal element \bsk Fix $D$, $H:D→\Set$. A {\sl universal element of $H$} is a pair $\ang{r,e}$ % Fix $D$, $C$, $S:D→C$, $r∈D$, $c∈C$. Then we have a functor $D(r,-):D→\Set$. Every $e∈Hr$, which can be seen as an arrow $e:*→Hr$, ...induces a NT % $\begin{array}[t]{rcrcl} ((H-)e) &:& D(r,-)? & \mtnto & C(c,S-)?, \\ ((H-)e)d &:& D(r,d) & \mtnto & Hd \\ && f & \mto & (Hf)e?. \\ \end{array} $ \msk We say that a pair $\ang{r,u}$ is a {\sl universal arrow from $c$ to $S$} when $(S-∘u)$ (i.e., $λd.λf'.Sf'∘u$) is a natural isomorphism, i.e., when every $(S-∘u)d$ (i.e., $λf'.Sf'∘u$) is a bijection. %D diagram universal-element %D 2Dx 100 +45 %D 2D 100 A0 --> A1 %D 2D %D 2D +20 B1 %D 2D | %D 2D v %D 2D +20 B2 |-> B3 %D 2D | | %D 2D v v %D 2D +20 B4 |-> B5 %D 2D %D 2D +20 C0 --> C1 %D 2D %D 2D +20 D0 --> D1 %D %D ren A0 A1 ==> D \Set %D ren B1 B2 B3 B4 B5 ==> * r Hr d Hd %D ren C0 C1 ==> D(r,-) H %D ren D0 D1 ==> D(r,d) Hd %D %D (( A0 A1 -> .plabel= a H %D B1 B3 -> .plabel= r u %D B2 B3 |-> .plabel= a S %D B2 B4 -> .plabel= l f B3 B5 -> .plabel= r Hf %D B4 B5 |-> .plabel= b S %D B1 B5 -> .plabel= r \sm{(Hf)e\\=x} .slide= 20pt %D C0 C1 -> .plabel= a (S-∘u) %D C0 C1 -> .plabel= b (\cong) %D D0 D1 -> .plabel= a (S-∘u)d %D D0 D1 -> .plabel= b (\cong) %D )) %D enddiagram %D $$\pu \diag{universal-element} $$ \newpage % __ __ _ _ ____ % \ \ / /__ _ __ ___ __| | __ _ | | | __ ) % \ V / _ \| '_ \ / _ \/ _` |/ _` | | | | _ \ % | | (_) | | | | __/ (_| | (_| | | |___| |_) | % |_|\___/|_| |_|\___|\__,_|\__,_| |_____|____/ % % «yoneda-behind» (to ".yoneda-behind") % (cw7p 7 "yoneda-behind") % (cw7 "yoneda-behind") \label{yoneda-behind} \par CWM2 \par III. Universals and Limits \par p.59: 2. The Yoneda Lemma \par {\bf The lemma behind Yoneda, in my notation} %D diagram ?? %D 2Dx 100 +35 %D 2D 100 A1 %D 2D | %D 2D v %D 2D +20 A2 |-> A3 %D 2D %D 2D ^ | %D 2D | | %D 2D | v %D 2D %D 2D +30 B1 --> B2 %D 2D %D ren A1 A2 A3 ==> A B RB %D ren B1 B2 ==> (B,-) (A,R-) %D %D (( A2 A3 |-> A1 A3 -> .plabel= r η %D B1 B2 -> .plabel= b S %D %D A2 B2 varrownodes nil 17 nil -> sl_ .plabel= l D %D A2 B2 varrownodes nil 17 nil <- sl^ .plabel= r U %D )) %D enddiagram %D $$\pu \diag{??} $$ There is a bijection between morphisms $η:A→RB$ and natural transformations $S:(B,-)→(A,R-)$. $D$ is $SCf := η;Rf$, i.e., $S:=λC.λf.(η;Rf)$ and $D := λη.λC.λf.(η;Rf)$. $U$ is $ε := SB\id_B$, i.e., $U := λS.SB\id_B$. We want to check that $U(Dη)=η$ and $D(US)=S$. Using just (untyped) $λ$-calculus we can prove $U(Dη)=η$ easily, but the proof of $D(US)=S$ stops halfway... $$\begin{array}{rcl} U(Dη) &=& (λS.SB(\id_B))((λη.λC.λf.(η;Rf))(η)) \\ &=& (λS.SB(\id_B))(λC.λf.(η;Rf)) \\ &=& (λC.λf.(η;Rf))B(\id_B) \\ &=& (λf.(η;Rf))(\id_B) \\ &=& η;R(\id_B) \\ &=& η;\id_{RB} \\ &=& η \\ \\ D(US) &=& (λη.λC.λf.(η;Rf))(SB(\id_B)) \\ &=& λC.λf.((SB(\id_B));Rf) \\ \end{array} $$ \newpage % __ __ _ _ ____ ____ % \ \ / /__ _ __ ___ __| | __ _ | | | __ )___ \ % \ V / _ \| '_ \ / _ \/ _` |/ _` | | | | _ \ __) | % | | (_) | | | | __/ (_| | (_| | | |___| |_) / __/ % |_|\___/|_| |_|\___|\__,_|\__,_| |_____|____/_____| % % «yoneda-behind-2» (to ".yoneda-behind") % (cw7p 8 "yoneda-behind-2") % (cw7 "yoneda-behind-2") \par CWM2 \par III. Universals and Limits \par p.59: 2. The Yoneda Lemma \par {\bf The lemma behind Yoneda, in my notation (2)} We need the naturality (a.k.a. the ``condition on squares'') of $S$: % %D diagram sqcond-1 %D 2Dx 100 +25 %D 2D 100 A1 %D 2D | %D 2D v %D 2D +20 A2 |-> A3 %D 2D | | %D 2D v v %D 2D +20 A4 |-> A5 %D 2D | | %D 2D v v %D 2D +20 A6 |-> A7 %D 2D %D ren A1 A2 A3 A4 A5 A6 A7 ==> A B RB C RC D RD %D %D (( A2 A3 |-> %D A4 A5 |-> %D A6 A7 |-> %D A2 A4 -> .plabel= l f %D A4 A6 -> .plabel= l g %D A1 A3 -> .plabel= r η %D A3 A5 -> .plabel= r Rf %D A5 A7 -> .plabel= r Rg %D A1 A5 -> .slide= 20pt .plabel= r h %D )) %D enddiagram %D %D diagram sqcond-2 %D 2Dx 100 +25 +35 +35 +35 %D 2D 100 B1 C1 -> C2 D1 -> D2 %D 2D | | | | v %D 2D +23 v v v v D4 %D 2D +7 B2 C3 -> C4 D3 -> D5 %D 2D %D 2D +20 A1 -> A2 %D 2D %D ren A1 A2 ==> (B,-) (A,R-) %D ren B1 B2 ==> C D %D ren C1 C2 C3 C4 ==> (B,C) (A,RC) (B,D) (A,RD) %D ren D1 D2 D3 D4 D5 ==> f SCf f;g (SCf);Rg SD(f;g) %D %D (( A1 A2 -> .plabel= a S %D B1 B2 -> .plabel= l g %D C1 C2 -> .plabel= a SC %D C1 C3 -> .plabel= m λg.(f;g) %D C2 C4 -> .plabel= m λh.(h;Rg) %D C3 C4 -> .plabel= a SD %D D1 D2 |-> D2 D4 |-> D1 D3 |-> D3 D5 |-> %D )) %D enddiagram %D $$\pu \diag{sqcond-1} \qquad \diag{sqcond-2} $$ which yields $(SCf);Rg=SD(f;g)$. Substituting $\bsm{C:=B\\ D:=C\\ f:=\id_B\\ g:=f}$ in that we get $(SB(\id_B));Rf=SC(\id_B;f)$, and so: % $$\begin{array}{rcl} D(US) &=& (λη.λC.λf.(η;Rf))(SB(\id_B)) \\ &=& λC.λf.((SB(\id_B));Rf) \\ &=& λC.λf.SC(\id_B;f) \\ &=& λC.λf.SCf \\ &=& S. \\ \end{array} $$ The last step can be explained as: $$\begin{array}{rcl} D(US)Cf &=& (λC.λf.SCf)Cf \\ &=& (λf.SCf)f \\ &=& SCf \\ \end{array} $$ % \end{document} \newpage % __ __ _ % \ \ / /__ _ __ ___ __| | __ _ % \ V / _ \| '_ \ / _ \/ _` |/ _` | % | | (_) | | | | __/ (_| | (_| | % |_|\___/|_| |_|\___|\__,_|\__,_| % % «yoneda» (to ".yoneda") % (cw7p 9 "yoneda") % (cw7 "yoneda") % (find-cwm2page (+ 9 55) "III. Universals and Limits") % (find-cwm2text (+ 9 55) "III. Universals and Limits") % (find-cwm2page (+ 9 59) "2. The Yoneda Lemma") % (find-cwm2text (+ 9 59) "2. The Yoneda Lemma") % (find-cwm2page (+ 9 61) "Lemma (Yoneda)") % (find-cwm2text (+ 9 61) "Lemma (Yoneda)") % (cw7p 9 "yoneda") \par CWM2 \par III. Universals and Limits \par p.59: 2. The Yoneda Lemma \par p.61: Lemma (Yoneda). \par {\bf Yoneda in my notation:} \msk %D diagram yoneda-0 %D 2Dx 100 +75 +80 %D 2D 100 B0 C0 %D 2D %D 2D +30 A1 B1 C1 %D 2D %D 2D +30 A2 B2 C2 %D 2D %D 2D +30 B3 C3 %D 2D %D ren A1 A2 ==> g:A→RC T:(C,-)→(A,R-) %D ren B0 B1 B2 B3 ==> r∈RC r':1→RC T':(C,-)→(1,R-) T'':(C,-)→R %D ren C0 C1 C2 C3 ==> f:B→C f':1→(B,C) T''':(C,-)→(1,(B,-)) f^*:(C,-)→(B,-) %D %D (( A1 A2 <-| sl_ %D A1 A2 |-> sl^ %D %D B0 B1 <-| sl_ %D B0 B1 |-> sl^ %D B1 B2 <-| sl_ %D B1 B2 |-> sl^ %D B2 B3 <-| sl_ %D B2 B3 |-> sl^ %D %D C0 C1 <-| sl_ %D C0 C1 |-> sl^ %D C1 C2 <-| sl_ %D C1 C2 |-> sl^ %D C2 C3 <-| sl_ %D C2 C3 |-> sl^ %D %D %D )) %D enddiagram %D $$\pu \diag{yoneda-0} $$ %D diagram yoneda-1 %D 2Dx 100 +35 +35 +35 +35 +40 %D 2D 100 A1 C1 E1 %D 2D | | | %D 2D v v v %D 2D +30 A2 |-> A3 C2 |-> C3 E2 |-> E3 %D 2D %D 2D ^ | ^ | ^ | %D 2D | | ---> | | ---> | | %D 2D | v | v | v %D 2D %D 2D +30 B1 --> B2 D1 --> D2 F1 --> F2 %D 2D \ | \ | \ | %D 2D v v v v v v %D 2D +30 B3 D3 F3 %D 2D %D ren A1 A2 A3 ==> A C RC %D ren C1 C2 C3 ==> 1 C RC %D ren E1 E2 E3 ==> 1 C (B,C) %D ren B1 B2 ==> (C,-) (A,R-) %D ren D1 D2 D3 ==> (C,-) (1,R-) R %D ren F1 F2 F3 ==> (C,-) (1,(B,-)) (B,-) %D %D (( A2 A3 |-> A1 A3 -> .plabel= r α %D C2 C3 |-> C1 C3 -> .plabel= r r %D E2 E3 |-> E1 E3 -> .plabel= r f %D B1 B2 -> .plabel= b T %D D1 D2 -> D2 D3 <-> D1 D3 -> .plabel= b T' %D F1 F2 -> F2 F3 <-> F1 F3 -> .plabel= b f^* %D %D A2 B2 varrownodes nil 17 nil -> sl_ %D A2 B2 varrownodes nil 17 nil <- sl^ %D C2 D2 varrownodes nil 17 nil -> sl_ %D C2 D2 varrownodes nil 17 nil <- sl^ .plabel= r y %D E2 F2 varrownodes nil 17 nil -> sl_ .plabel= l Y %D E2 F2 varrownodes nil 17 nil <- sl^ %D %D B2 C2 harrownodes nil 20 nil -> %D D2 E2 harrownodes nil 20 nil -> %D )) %D enddiagram %D $$\pu \diag{yoneda-1} $$ \bsk \par Left part: \par Fix categories $\catA$ and $\catC$, a functor $R:\catC→\catA$, and objects $A∈\catA$, $C∈\catC$. \par We have functors $(C,-):\catC→\Set$ and $(A,R-):\catC→\Set$. \par Each map $α:A→RC$ induces a NT $T:(C,-)→(A,R-)$ and vice-versa. \par The formulas are $T:=λD:\catC.λf:(C,D).(a;Rf)$ and $α=T_C(\id_C)$, \par and the `$↓↑$' is a bijection. \msk \par Middle part: \par We take the left part and substitute $\catA:=\Set$ and $A:=1$. \par The functor $R$ becomes a functor from $\catC$ to $\Set$. \par There is a natural iso (`$\updownarrow$', unnamed) between the functors $(1,R-)$ and $R$. \par We have a bijection between arrows $r:1→RC$ (or elements of $RC$) \par and natural transformations $T':(C,-)→R$. \par The {\sl Yoneda map} `$y$' in `$↓↑y$' is a bijection $y:\Nat((C,-),R)≅RC$. \msk \par Right part: \par Choose an object $B∈\catC$. Take the middle part and substitute $R:=(B,-)$. \par We get a bijection ${Y}{↓}{↑}$ between maps $f:B→C$ and NTs \par $f^*:(C,-)→(B,-)$. The {\sl Yoneda Functor} $Y:\catC^\op→\Set^\catC$ behaves as: %D diagram ?? %D 2Dx 100 +20 +25 %D 2D 100 A1 A2 A3 %D 2D %D 2D +20 A4 A5 A6 %D 2D %D ren A1 A4 ==> B C %D ren A2 A5 ==> B^\op C^\op %D ren A3 A6 ==> (B,-) (C,-) %D %D (( A1 A4 -> .plabel= l f %D A2 A5 <- .plabel= l f^\op %D A3 A6 <- .plabel= r Yf %D A2 A3 |-> A5 A6 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % __ __ _ _ % \ \ / /__ _ __ ___ __| | __ _ | | % \ V / _ \| '_ \ / _ \/ _` |/ _` | | | % | | (_) | | | | __/ (_| | (_| | | |___ % |_|\___/|_| |_|\___|\__,_|\__,_| |_____| % % «yoneda-L» (to ".yoneda-L") % (cw7p 11 "yoneda-L") % (cw7 "yoneda-L") % (find-cwm2page (+ 9 55) "III. Universals and Limits") % (find-cwm2text (+ 9 55) "III. Universals and Limits") % (find-cwm2page (+ 13 59) "2. The Yoneda Lemma") % (find-cwm2text (+ 13 59) "2. The Yoneda Lemma") % (find-cwm2page (+ 13 61) "Lemma (Yoneda)") % (find-cwm2text (+ 13 61) "Lemma (Yoneda)") \label{yoneda-L} \par CWM2 \par III. Universals and Limits \par p.59: 2. The Yoneda Lemma \par p.61: Lemma (Yoneda). \msk %D diagram ?? %D 2Dx 100 +35 +35 +45 +35 +45 %D 2D 100 A1 C1 E1 %D 2D | | | %D 2D v v v %D 2D +30 A2 |-> A3 C2 |-> C3 E2 |-> E3 %D 2D %D 2D ^ | ^ | ^ | %D 2D | | ---> | | ---> | | %D 2D | v | v | v %D 2D %D 2D +30 B1 --> B2 D1 --> D2 F1 --> F2 %D 2D \ | \ | \ | %D 2D v v v v v v %D 2D +30 B3 D3 F3 %D 2D %D ren A1 A2 A3 ==> c r Sr %D ren C1 C2 C3 ==> * r Kr %D ren E1 E2 E3 ==> * r D(s,r) %D ren B1 B2 ==> D(r,-) C(c,S-) %D ren D1 D2 D3 ==> D(r,-) \Set(*,K-) K %D ren F1 F2 F3 ==> D(r,-) \Set(*,D(s,-)) D(s,-) %D %D (( A2 A3 |-> A1 A3 -> .plabel= r u %D C2 C3 |-> C1 C3 -> .plabel= r u %D E2 E3 |-> E1 E3 -> .plabel= r f %D B1 B2 -> .plabel= b T %D D1 D2 -> D2 D3 <-> D1 D3 -> .plabel= b T' %D F1 F2 -> F2 F3 <-> F1 F3 -> .plabel= b D(f,-) %D %D A2 B2 varrownodes nil 17 nil -> sl_ %D A2 B2 varrownodes nil 17 nil <- sl^ %D C2 D2 varrownodes nil 17 nil -> sl_ %D C2 D2 varrownodes nil 17 nil <- sl^ .plabel= r y %D E2 F2 varrownodes nil 17 nil -> sl_ .plabel= l Y %D E2 F2 varrownodes nil 17 nil <- sl^ %D %D B2 C2 harrownodes nil 20 nil -> %D D2 E2 harrownodes nil 20 nil -> %D )) %D enddiagram %D $$\pu \diag{??} $$ % (cw7p 5) \newpage % __ __ _ _ % \ \ / /__ _ __ ___ __| | __ _ / | % \ V / _ \| '_ \ / _ \/ _` |/ _` | | | % | | (_) | | | | __/ (_| | (_| | | | % |_|\___/|_| |_|\___|\__,_|\__,_| |_| % % «yoneda-1» (to ".yoneda-1") % (cw7p 12 "yoneda-1") % (cw7 "yoneda-1") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 55) "III. Universals and Limits") % (find-cwm2text (+ 9 55) "III. Universals and Limits") % (find-cwm2page (+ 9 59) "2. The Yoneda Lemma") % (find-cwm2text (+ 9 59) "2. The Yoneda Lemma") \par CWM2 \par III. Universals and Limits \par p.59: 2. The Yoneda Lemma \par Proposition 1 \bsk %D diagram universal-from-c-to-S-2 %D 2Dx 100 +45 +45 +45 %D 2D 100 A0 --> A1 %D 2D %D 2D +20 B1 %D 2D | %D 2D v %D 2D +20 B2 |-> B3 %D 2D | | %D 2D v v %D 2D +20 B4 |-> B5 %D 2D | | %D 2D v v %D 2D +20 B6 |-> B7 %D 2D %D 2D +20 C0 --> C1 C2 --> C3 %D 2D %D 2D +20 D0 --> D1 %D 2D %D 2D +20 E0 --> E1 E2 --> E3 %D 2D %D 2D +20 F0 --> F1 F2 --> F3 %D %D ren A0 A1 ==> D C %D ren B1 B2 B3 B4 B5 ==> c r Sr d Sd %D ren B6 B7 ==> d' Sd' %D ren C0 C1 ==> D(r,-) C(c,S-) %D ren D0 D1 ==> D(r,d) C(c,Sd) %D ren E0 E1 ==> D(r,r) C(c,Sr) %D ren F0 F1 ==> 1_r \begin{array}[t]{l}S1_r∘u\\=1_{Sr}∘u\\=u\end{array} %D ren C2 C3 ==> D(r,-) C(c,S-) %D ren E2 E3 ==> D(r,r) C(c,Sr) %D ren F2 F3 ==> 1_r φ_r(1_r) %D %D (( A0 A1 -> .plabel= a S %D B1 B3 -> .plabel= r u %D B2 B3 |-> .plabel= a S %D B2 B4 -> .plabel= l f' B3 B5 -> .plabel= r Sf' %D B4 B5 |-> .plabel= m S %D B1 B5 -> .plabel= r Sf'∘u .slide= 20pt %D B4 B6 -> .plabel= l k B5 B7 -> .plabel= r Sk %D B6 B7 |-> .plabel= b S %D C0 C1 -> .plabel= a (S-∘u) %D C0 C1 -> .plabel= b (\cong) %D D0 D1 -> .plabel= a (S-∘u)d %D D0 D1 -> .plabel= b (\cong) %D E0 E1 -> .plabel= a (S-∘u)r %D E0 E1 -> .plabel= b (\cong) %D F0 F1 |-> .plabel= a (S-∘u)r %D C2 C3 -> .plabel= a φ %D C2 C3 -> .plabel= b (\cong) %D E2 E3 -> .plabel= a φ_r %D E2 E3 -> .plabel= b (\cong) %D F2 F3 |-> .plabel= a φ_r %D )) %D enddiagram %D $$\pu \diag{universal-from-c-to-S-2} $$ % (find-cwm2page (+ 9 59) "2. The Yoneda Lemma") % (find-cwm2text (+ 9 59) "2. The Yoneda Lemma") % (cw7p 5) %D diagram yoneda-p59 %D 2Dx 100 +35 +40 +40 %D 2D 100 A0 A1 %D 2D | %D 2D v %D 2D +20 A2 |-> A3 B2 |-> B3 %D 2D | | | | %D 2D | |-> | | |-> | %D 2D v v v v %D 2D +20 A4 |-> A5 B4 |-> B5 %D 2D | | | | %D 2D | |-> | | |-> | %D 2D v v v v %D 2D +20 A6 |-> A7 B6 |-> B7 %D 2D %D ren A0 A1 A2 A3 A4 A5 A6 A7 ==> r ? r D(r,r) d D(r,d) d' D(r,d') %D ren B2 B3 B4 B5 B6 B7 ==> r C(c,Sr) d C(c,Sd) d' C(c,Sd') %D %D (( A0 A2 -> .plabel= l ρ %D A2 A4 -> .plabel= l f' A3 A5 -> .plabel= r \sm{D(r,f')=\\λρ.f'∘ρ} %D A4 A6 -> .plabel= l k A5 A7 -> .plabel= r \sm{D(r,k)=\\λf'.k∘f'} %D A2 A3 |-> .plabel= a D(r,-) %D A4 A5 |-> %D A6 A7 |-> %D A2 A5 harrownodes nil 20 nil |-> %D A4 A7 harrownodes nil 20 nil |-> %D %D B2 B3 |-> .plabel= a C(s,S-) %D B4 B5 |-> %D B6 B7 |-> %D B2 B4 -> .plabel= l f' B3 B5 -> .plabel= r \sm{C(c,Sf')=\\λu.Sf'∘u} %D B4 B6 -> .plabel= l k B5 B7 -> .plabel= r \sm{C(c,Sk)=\\λg.Sk∘g} %D B2 B5 harrownodes nil 20 nil |-> %D B4 B7 harrownodes nil 20 nil |-> %D )) %D enddiagram %D % $$\pu % \diag{yoneda-p59} % $$ %D diagram yoneda-p60 %D 2Dx 100 +40 %D 2D 100 A0 --> A1 %D 2D | | %D 2D v v %D 2D +30 A2 --> A3 %D 2D %D 2D +20 B0 --> B1 %D 2D | | %D 2D v v %D 2D +30 B2 --> B3 %D 2D %D ren A0 A1 A2 A3 ==> D(r,r) C(c,Sr) D(r,d) C(c,Sd) %D ren B0 B1 B2 B3 ==> 1_r φ_r(1_r) f' C(c,Sd) %D %D (( A0 A1 -> .plabel= a φ_r %D A0 A2 -> .plabel= l D(r,f') A1 A3 -> .plabel= r C(c,Sf') %D A2 A3 -> .plabel= b φ_r %D %D B0 B1 |-> .plabel= a φ_r %D B0 B2 |-> .plabel= l λρ.f'∘ρ B1 B3 |-> .plabel= r C(c,Sf') %D B2 B3 |-> .plabel= b φ_r %D %D )) %D enddiagram %D $$\pu \diag{yoneda-p59} \qquad \diag{yoneda-p60} $$ \newpage % __ __ _ ____ % \ \ / /__ _ __ ___ __| | __ _ |___ \ % \ V / _ \| '_ \ / _ \/ _` |/ _` | __) | % | | (_) | | | | __/ (_| | (_| | / __/ % |_|\___/|_| |_|\___|\__,_|\__,_| |_____| % % «yoneda-2» (to ".yoneda-2") % (cw7p 13 "yoneda-2") % (cw7 "yoneda-2") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 55) "III. Universals and Limits") % (find-cwm2text (+ 9 55) "III. Universals and Limits") % (find-cwm2page (+ 9 60) "2. The Yoneda Lemma") % (find-cwm2text (+ 9 60) "2. The Yoneda Lemma") % (find-cwm2page (+ 9 60) "Proposition 2") % (find-cwm2text (+ 9 60) "Proposition 2") \par CWM2 \par III. Universals and Limits \par p.59: 2. The Yoneda Lemma \par p.60: Proposition 2 \bsk % % % % D ---K---> Set % % * % % r Kr % % d Kd % % D(r,d) Set(*,Kd) Kd % % D(r,-) Set(*,K-) K % % %D diagram ?? %D 2Dx 100 +50 +40 %D 2D 100 A0 --> A1 %D 2D %D 2D +20 B0 B1 %D 2D | %D 2D | %D 2D v %D 2D +20 B2 |-> B3 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 B4 |-> B5 %D 2D %D 2D +20 C0 --> C1 --> C2 %D 2D %D 2D +20 D0 --> D1 --> D2 %D 2D %D ren A0 A1 ==> D \Set %D ren B0 B1 B2 B3 B4 B5 ==> ? * r Kr d Kd %D ren C0 C1 C2 ==> D(r,d) \Set(*,Kd) Kd %D ren D0 D1 D2 ==> D(r,-) \Set(*,K-) K %D %D (( A0 A1 -> .plabel= a K %D %D B1 B3 -> .plabel= r u %D B2 B3 |-> %D B2 B4 -> .plabel= l f' B3 B5 -> .plabel= r Kf' %D B4 B5 |-> %D %D C0 C1 -> .plabel= a (K-∘u)d %D C0 C1 -> .plabel= b (≅) C1 C2 -> .plabel= b (≅) %D D0 D1 -> .plabel= a (K-∘u) %D D0 D1 -> .plabel= b (≅) D1 D2 -> .plabel= b (≅) %D )) %D enddiagram %D $$\pu \diag{??} $$ \newpage % __ __ _ ____ _____ % \ \ / /__ _ __ ___ __| | __ _ / ___| ___| % \ V / _ \| '_ \ / _ \/ _` |/ _` | | | _| |_ % | | (_) | | | | __/ (_| | (_| | | |_| | _| % |_|\___/|_| |_|\___|\__,_|\__,_| \____|_| % % «yoneda-GF» (to ".yoneda-GF") % (cw7p 14 "yoneda-GF") % (cw7 "yoneda-GF") % (find-fline "/tmp/gf-yoneda.jpg") Yoneda: GF \ssk $\begin{array}{rcrclclccl} f &:& A & → & B \\ & & Nat(yB,F) & ↦ & Nat(yA,F) \\ & & c & ↦ & c∘(f∘-) &:& yA → F \\ & & & & c∘(f∘-)_C &:& yAC → FC \\ & & & & &:& \catC(C,A) &→& FC \\ & & & & & & g &↦& \Cat_c(f∘g) \\ \end{array} $ \newpage % _ _ _ _ _ % / \ __| |(_) ___ (_)_ __ | |_ ___ % / _ \ / _` || |/ _ \| | '_ \| __/ __| % / ___ \ (_| || | (_) | | | | | |_\__ \ % /_/ \_\__,_|/ |\___/|_|_| |_|\__|___/ % |__/ % % «adjoints» (to ".adjoints") % (cw7p 15 "adjoints") % (cw7 "adjoints") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 79) "IV. Adjoints") % (find-cwm2page (+ 9 79) "1. Adjunctions") % (find-cwm2text (+ 9 79) "1. Adjunctions") % (find-cwm2page (+ 9 80) "adjunction") % (find-cwm2text (+ 9 80) "adjunction") \par CWM2 \par IV. Adjoints \par p.79: Adjunctions \bsk Fix $X$, $A$, $F:X→A$, $G:A→X$. Then we have functors $A(F-,-): X^\op×A→\Set$ and $X(-,G-): X^\op×A→\Set$. An {\sl adjunction from $X$ to $A$} is a triple $\ang{F,G,φ}:X⇀A$ where $φ:A(F-,-)→X(-,G-)$ is a natural iso, i.e., for all $x∈X$, $a∈A$ this is a bijection: $φ_{x,a}:A(Fx,a)→X(x,Ga)$ and $φ$ is natural in the sense that... %D diagram adjoints-2 %D 2Dx 100 +20 +20 +60 +40 +40 +45 %D 2D 100 micro %D 2D %D 2D +20 A0 <--> A1 %D 2D %D 2D +20 C0 <--| C1 D0 ---> D1 E0 ---> E1 %D 2D | | ^ ^ ^ ^ %D 2D | | | | | | %D 2D v v | | | | %D 2D +20 C2 <--| C3 | | | | %D 2D | | | | | | %D 2D | -> | | | | | %D 2D v v | | | | %D 2D +20 C4 |--> C5 D2 ---> D3 E2 ---> E3 %D 2D %D 2D +20 F0 <--| F1 G0 ---> G1 H0 ---> H1 %D 2D | | | | | | %D 2D | -> | | | | | %D 2D v v | | | | %D 2D +20 F2 |--> F3 | | | | %D 2D | | | | | | %D 2D | | | | | | %D 2D v v v v v v %D 2D +20 F4 |--> F5 G2 ---> G3 H2 ---> H3 %D 2D %D 2D +20 a0 <--> a1 %D 2D %D 2D +20 B0 <--> B1 %D 2D %D ren micro ==> \ang{F,G,φ}:X⇀A %D ren A0 A1 ==> A X %D ren a0 a1 ==> A(F-,-) X(-,G-) %D ren B0 B1 ==> A(Fx,a) X(x,Ga) %D ren C0 C1 C2 C3 C4 C5 ==> Fx' x' Fx x a Ga %D ren D0 D1 D2 D3 ==> A(Fx',a) X(x',Ga) A(Fx,a) X(x,Ga) %D ren E0 E1 E2 E3 ==> \medE \bigE f φf %D ren F0 F1 F2 F3 F4 F5 ==> Fx x a Ga a' Ga' %D ren G0 G1 G2 G3 ==> A(Fx,a) X(x,Ga) A(Fx,a') X(x,Ga') %D ren H0 H1 H2 H3 ==> f φf \medH \bigH %D (( micro place %D A0 A1 <- sl^ .plabel= a F %D A0 A1 -> sl_ .plabel= b G %D %D a0 a1 <- sl^ .plabel= a φ^{-1} %D a0 a1 -> sl_ .plabel= b φ %D %D B0 B1 <- sl^ .plabel= a φ^{-1}_{x,a} %D B0 B1 -> sl_ .plabel= b φ_{x,a} %D %D C0 C1 <-| .plabel= a F %D C0 C2 -> .plabel= l Fh C1 C3 -> .plabel= r h %D C2 C3 <-| .plabel= a F %D C2 C4 -> .plabel= l f C3 C5 -> .plabel= r g %D C4 C5 |-> .plabel= b G %D C0 C4 -> .slide= -20pt .plabel= l \sm{(Fh)^*f\\:=\;f∘Fh} %D C1 C5 -> .slide= 20pt .plabel= r \sm{h^*g\;:=\\g∘h} %D C2 C5 harrownodes nil 20 nil |-> sl__ .plabel= l φ %D %D D0 D1 -> .plabel= a φ_{x'\!,a} %D D0 D2 <- .plabel= l (Fh)^* D1 D3 <- .plabel= r h^* %D D2 D3 -> .plabel= b φ_{x,a} %D %D E0 E1 -> .plabel= a φ_{x'\!,a} .slide= 12pt %D E0 E2 <- .plabel= l (Fh)^* E1 E3 <- .plabel= r h^* %D E2 E3 -> .plabel= b φ_{x,a} %D %D F0 F1 <-| .plabel= a F %D F0 F2 -> .plabel= l f F1 F3 -> .plabel= r g %D F0 F3 harrownodes nil 20 nil |-> sl__ .plabel= l φ %D F2 F3 |-> .plabel= b G %D F2 F4 -> .plabel= l k F3 F5 -> .plabel= r Gk %D F4 F5 |-> .plabel= b G %D F0 F4 -> .slide= -20pt .plabel= l \sm{k_*f\;:=\\k∘f} %D F1 F5 -> .slide= 20pt .plabel= r \sm{(Gk)_*g\\:=\;Gk∘g} %D %D G0 G1 -> .plabel= a φ_{x,a} %D G0 G2 -> .plabel= l k_* G1 G3 -> .plabel= r (Gk)_* %D G2 G3 -> .plabel= b φ_{x,a'} %D %D H0 H1 -> .plabel= a φ_{x,a} %D H0 H2 -> .plabel= l k_* H1 H3 -> .plabel= r (Gk)_* %D H2 H3 -> .plabel= b φ_{x,a'} .slide= -12pt %D )) %D enddiagram %D $$\pu \def\medE{\mat{(Fh)^*f \\ = f∘Fh}} \def\bigE{\mat{φ(f∘Fh) \\ = \\ h^*(φf) = \\ (φf)∘h^*}} \def\medH{\mat{k_*f \\ = k∘f}} \def\bigH{\mat{(Gk)_*(φf) \\ = Gk∘φf \\ = \\ φ(k∘f)}} \hbox to -30pt{} \diag{adjoints-2} $$ \newpage % _ _ _ _ _ ____ % / \ __| |(_) ___ (_)_ __ | |_ ___ |___ \ % / _ \ / _` || |/ _ \| | '_ \| __/ __| __) | % / ___ \ (_| || | (_) | | | | | |_\__ \ / __/ % /_/ \_\__,_|/ |\___/|_|_| |_|\__|___/ |_____| % |__/ % % «adjoints-2» (to ".adjoints-2") % (cw7p 16 "adjoints-2") % (cw7 "adjoints-2") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 79) "IV. Adjoints") % (find-cwm2page (+ 9 79) "1. Adjunctions") % (find-cwm2text (+ 9 79) "1. Adjunctions") % (find-cwm2page (+ 9 80) "adjunction") % (find-cwm2text (+ 9 80) "adjunction") \par CWM2 \par IV. Adjoints \par p.79: Adjunctions - the naturality of $φ$ \bsk Fix $X$, $A$, $F:X→A$, $G:A→X$, $\ang{F,G,φ}:X⇀A$. Remember that we have functors $A(F-,-): X^\op×A→\Set$ and $X(-,G-): X^\op×A→\Set$, and $φ:A(F-,-)→X(-,G-)$ is a natural transformation (and a natural iso)... Let $〈h,k〉:〈x,a〉→〈x',a'〉$ be a morphism in $X^\op×A$. The naturality of $φ$ is easier to see in this diagram: %D diagram adjoints-3 %D 2Dx 100 +20 +20 +65 +65 +40 +45 %D 2D 100 micro %D 2D %D 2D +20 A0 <--> A1 %D 2D %D 2D +20 C0 <--| C1 D0 ---> D1 %D 2D | | | | %D 2D | | | | %D 2D v v v v %D 2D +20 C2 <--| C3 D2 ---> D3 %D 2D | | %D 2D | -> | %D 2D v v %D 2D +20 C4 |--> C5 E0 ---> E1 %D 2D | | | | %D 2D | | | | %D 2D v v v v %D 2D +20 C6 |--> C7 E2 ---> E3 %D 2D %D 2D +20 a0 <--> a1 F0 ---> F1 %D 2D | | %D 2D | v %D 2D +20 B0 <--> B1 | F3 %D 2D +10 F2 ---> F4 %D 2D %D ren micro ==> \ang{F,G,φ}:X⇀A %D ren A0 A1 ==> A X %D ren a0 a1 ==> A(F-,-) X(-,G-) %D ren B0 B1 ==> A(Fx,a) X(x,Ga) %D ren C0 C1 C2 C3 C4 C5 C6 C7 ==> Fx' x' Fx x a Ga a' Ga' %D ren D0 D1 D2 D3 ==> A(F-,-)〈x,a〉 X(-,G-)〈x,a〉 A(F-,-)〈x',a'〉 X(-,G-)〈x',a'〉 %D ren E0 E1 E2 E3 ==> A(Fx,a) X(x,Ga) A(Fx',a') X(x',Ga') %D ren F0 F1 F2 F3 F4 ==> f φf k∘f∘Fh gk∘φf∘h φ(k∘f∘Fh) %D # ren G0 G1 G2 G3 ==> A(Fx,a) X(x,Ga) A(Fx,a') X(x,Ga') %D # ren H0 H1 H2 H3 ==> f φf \medH \bigH %D (( micro place %D A0 A1 <- sl^ .plabel= a F %D A0 A1 -> sl_ .plabel= b G %D %D a0 a1 <- sl^ .plabel= a φ^{-1} %D a0 a1 -> sl_ .plabel= b φ %D %D B0 B1 <- sl^ .plabel= a φ^{-1}_{x,a} %D B0 B1 -> sl_ .plabel= b φ_{x,a} %D %D C0 C1 <-| .plabel= a F %D C0 C2 -> .plabel= l Fh C1 C3 -> .plabel= r h %D C2 C3 <-| .plabel= a F %D C2 C4 -> .plabel= l f C3 C5 -> .plabel= r φf %D C4 C5 |-> .plabel= b G %D C4 C6 -> .plabel= l k C5 C7 -> .plabel= r Gk %D C6 C7 |-> .plabel= b G %D %D C0 C6 -> .slide= -20pt .plabel= l k∘f∘Fh %D C1 C7 -> .slide= 20pt .plabel= r gk∘φf∘h %D C2 C5 harrownodes nil 20 nil |-> sl__ .plabel= l φ %D %D D0 D1 -> .plabel= a φ〈a,x〉 %D D0 D2 -> .plabel= l A(F-,-)〈k,h〉 D1 D3 -> .plabel= r X(-,G-)〈k,h〉 %D D2 D3 -> .plabel= b φ〈a',x'〉 %D %D E0 E1 -> .plabel= a φ_{x,a} %D E0 E2 -> .plabel= l A(Fh,k) E1 E3 -> .plabel= r X(h,Gk) %D E2 E3 -> .plabel= b φ_{x'\!,a'} %D %D F0 F1 |-> F1 F3 |-> F0 F2 |-> F2 F4 |-> %D %D # E0 E1 -> .plabel= a φ_{x'\!,a} .slide= 12pt %D # E0 E2 <- .plabel= l (Fh)^* E1 E3 <- .plabel= r h^* %D # E2 E3 -> .plabel= b φ_{x,a} %D %D # F0 F1 <-| .plabel= a F %D # F0 F2 -> .plabel= l f F1 F3 -> .plabel= r g %D # F0 F3 harrownodes nil 20 nil |-> sl__ .plabel= l φ %D # F2 F3 |-> .plabel= b G %D # F2 F4 -> .plabel= l k F3 F5 -> .plabel= r Gk %D # F4 F5 |-> .plabel= b G %D # F0 F4 -> .slide= -20pt .plabel= l \sm{k_*f\;:=\\k∘f} %D # F1 F5 -> .slide= 20pt .plabel= r \sm{(Gk)_*g\\:=\;Gk∘g} %D %D # G0 G1 -> .plabel= a φ_{x,a} %D # G0 G2 -> .plabel= l k_* G1 G3 -> .plabel= r (Gk)_* %D # G2 G3 -> .plabel= b φ_{x,a'} %D %D # H0 H1 -> .plabel= a φ_{x,a} %D # H0 H2 -> .plabel= l k_* H1 H3 -> .plabel= r (Gk)_* %D # H2 H3 -> .plabel= b φ_{x,a'} .slide= -12pt %D )) %D enddiagram %D $$\pu \def\medE{\mat{(Fh)^*f \\ = f∘Fh}} \def\bigE{\mat{φ(f∘Fh) \\ = \\ h^*(φf) = \\ (φf)∘h^*}} \def\medH{\mat{k_*f \\ = k∘f}} \def\bigH{\mat{(Gk)_*(φf) \\ = Gk∘φf \\ = \\ φ(k∘f)}} \hbox to -30pt{} \diag{adjoints-3} $$ \newpage % ___ _ _ __ % |_ _|_ __ | |_ ___ _ __ __| | ___ / _| % | || '_ \| __/ _ \ '__/ _` |/ _ \ |_ % | || | | | || __/ | | (_| | __/ _| % |___|_| |_|\__\___|_| \__,_|\___|_| % % «adjoints-interdef-1» (to ".adjoints-interdef-1") % (cw7p 17 "adjoints-interdef-1") % (cw7 "adjoints-interdef-1") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 79) "IV. Adjoints") % (find-cwm2page (+ 9 82) "adjunction") % (find-cwm2text (+ 9 82) "adjunction") % (find-cwm2page (+ 9 83) "Theorem 2") % (find-cwm2text (+ 9 83) "Theorem 2") % (find-angg "LATEX/2017adjunctions.tex") % (cw7p 6) \label{adjoints-interdef-1} \par CWM2 \par IV. Adjoints \par p.82: Adjunctions - interdefinabilities \par (In MacLane's notation; unrevised) \bsk $F⊣G$, \;\; $〈F,G,φ〉:X⇀A$, $\A \two/<-`->/<200>^F_G X$, \;\; $A(F-,-) \two/<-`->/<200>^{φ^{-1}}_φ X(-,G-)$. %D diagram ?? %D 2Dx 100 +30 %D 2D 100 A0 <-| A1 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 A2 <-| A3 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 A4 |-> A5 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 A6 |-> A7 %D 2D %D ren A0 A1 A2 A3 A4 A5 A6 A7 ==> Fx' x' Fx x a Ga a' Ga' %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l Fh A1 A3 -> .plabel= r h %D A2 A3 <-| %D A2 A4 -> .plabel= l \sm{φ^{-1}g\\f} A3 A5 -> .plabel= r \sm{g\\φf} %D A2 A5 harrownodes nil 20 nil <-| sl^ .plabel= a φ^{-1} %D A2 A5 harrownodes nil 20 nil |-> sl_ .plabel= b φ %D A4 A5 |-> %D A4 A6 -> .plabel= l k A5 A7 -> .plabel= r Gk %D A6 A7 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +30 +50 +30 +40 +30 %D 2D 100 C0 C1 E0 E1 %D 2D %D 2D %D 2D %D 2D +20 A0 <-| A1 C2 C3 E2 E3 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 A2 |-> A3 C4 C5 E4 E5 %D 2D %D 2D %D 2D %D 2D +20 B0 <-| B1 D0 D1 F0 F1 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 B2 |-> B3 D2 D3 F2 F3 %D 2D %D 2D %D 2D %D 2D +20 D4 D5 F4 F5 %D 2D %D ren A0 A1 A2 A3 ==> Fx x Fx GFx %D ren B0 B1 B2 B3 ==> FGa Ga a Ga %D ren C0 C1 C2 C3 C4 C5 ==> Fx x FGa Ga a ? %D ren D0 D1 D2 D3 D4 D5 ==> ? x Fx GFx a Ga %D ren E0 E1 E2 E3 E4 E5 ==> Fx' x' ? x Fx GFx %D ren F0 F1 F2 F3 F4 F5 ==> FGa Ga a ? a' Ga' %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= a \id_{Fx} A1 A3 -> .plabel= r \sm{ηx=\\(\id_{Fx})^♯} %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil |-> sl_ .plabel= b φ %D %D B0 B1 <-| %D B0 B2 -> .plabel= l \sm{ε_a=\\φ^{-1}(\id_{Ga})} B1 B3 -> .plabel= r \id_{Ga} %D B2 B3 |-> %D B0 B3 harrownodes nil 20 nil <-| sl^ .plabel= a φ^{-1} %D %D C0 C1 <-| %D C0 C2 -> .plabel= l Fg C1 C3 -> .plabel= r g %D C2 C3 <-| %D C2 C4 -> .plabel= l ε_a C3 C4 <-| %D C0 C4 -> .slide= -15pt .plabel= l \sm{φ^{-1}g=\\ε_a∘Fg} %D %D D1 D2 |-> D1 D3 -> .plabel= r η_x %D D2 D3 |-> %D D2 D4 -> .plabel= l f D3 D5 -> .plabel= r Gf %D D4 D5 |-> %D D1 D5 -> .slide= 15pt .plabel= r \sm{φf=\\Gf∘η_x} %D %D E0 E1 <-| %D E0 E4 -> .plabel= l \sm{Fh=\\φ^{-1}(η_x∘h)} E1 E3 -> .plabel= r h %D E3 E4 |-> E3 E5 -> .plabel= r η_x %D E4 E5 |-> %D %D F0 F1 |-> %D F0 F2 -> .plabel= l ε_a F1 F2 <-| %D F1 F5 -> .plabel= r \sm{Gk=\\φ(k∘ε_a)} %D F2 F4 -> .plabel= l k %D F4 F5 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ Theorem 2. $〈L,R,♯〉:\catA→\catB$ is completely determined by: (i) $L, R, η$, with each $η_A$ universal (ii) $G, F_0$ and universal arrows $η_A$ (iii) $F, G, ε$ with each $ε_a$ universal (iv) $F, G_0$ and universal arrows $ε_a$ (v) \newpage % ___ _ _ __ ____ % |_ _|_ __ | |_ ___ _ __ __| | ___ / _| |___ \ % | || '_ \| __/ _ \ '__/ _` |/ _ \ |_ __) | % | || | | | || __/ | | (_| | __/ _| / __/ % |___|_| |_|\__\___|_| \__,_|\___|_| |_____| % % «adjoints-3» (to ".adjoints-3") % «adjoints-interdef-2» (to ".adjoints-interdef-2") % (cw7p 18 "adjoints-interdef-2") % (cw7 "adjoints-interdef-2") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 79) "IV. Adjoints") % (find-cwm2page (+ 9 82) "adjunction") % (find-cwm2text (+ 9 82) "adjunction") % (find-cwm2page (+ 9 83) "Theorem 2") % (find-cwm2text (+ 9 83) "Theorem 2") % (find-angg "LATEX/2017adjunctions.tex") \label{adjoints-interdef-2} \par CWM2 \par IV. Adjoints \par p.82: Adjunctions - interdefinabilities \par (In my notation) \bsk $L⊣R$, \;\; $〈L,R,♯〉:\catA→\catB$, $\catB \two/<-`->/<200>^L_R \catA$, \;\; $\catB(L-,-) \two/<-`->/<200>^♭_♯ \catA(-,R-)$. %D diagram ?? %D 2Dx 100 +30 %D 2D 100 A0 <-| A1 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 A2 <-| A3 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 A4 |-> A5 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 A6 |-> A7 %D 2D %D ren A0 A1 A2 A3 A4 A5 A6 A7 ==> LA' A' LA A B RB B' RB' %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= l Lα A1 A3 -> .plabel= r α %D A2 A3 <-| %D A2 A4 -> .plabel= l \sm{g^♭\\f} A3 A5 -> .plabel= r \sm{g\\f^♯} %D A2 A5 harrownodes nil 20 nil <-| sl^ .plabel= a ♭ %D A2 A5 harrownodes nil 20 nil |-> sl_ .plabel= b ♯ %D A4 A5 |-> %D A4 A6 -> .plabel= l β A5 A7 -> .plabel= r Rβ %D A6 A7 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ %D diagram ?? %D 2Dx 100 +30 +50 +30 +40 +30 %D 2D 100 C0 C1 E0 E1 %D 2D %D 2D %D 2D %D 2D +20 A0 <-| A1 C2 C3 E2 E3 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 A2 |-> A3 C4 C5 E4 E5 %D 2D %D 2D %D 2D %D 2D +20 B0 <-| B1 D0 D1 F0 F1 %D 2D | | %D 2D | | %D 2D v v %D 2D +20 B2 |-> B3 D2 D3 F2 F3 %D 2D %D 2D %D 2D %D 2D +20 D4 D5 F4 F5 %D 2D %D ren A0 A1 A2 A3 ==> LA A LA RLA %D ren B0 B1 B2 B3 ==> LRB RB B RB %D ren C0 C1 C2 C3 C4 C5 ==> LA A LRB RB B ? %D ren D0 D1 D2 D3 D4 D5 ==> ? A LA RLA B RB %D ren E0 E1 E2 E3 E4 E5 ==> LA' A' ? A LA RLA %D ren F0 F1 F2 F3 F4 F5 ==> LRB RB B ? B' RB' %D %D (( A0 A1 <-| %D A0 A2 -> .plabel= a \id_{LA} A1 A3 -> .plabel= r \sm{η_A=\\(\id_{LA})^♯} %D A2 A3 |-> %D A0 A3 harrownodes nil 20 nil |-> sl_ .plabel= b ♯ %D %D B0 B1 <-| %D B0 B2 -> .plabel= l \sm{ε_B=\\(\id_{RB})^β} B1 B3 -> .plabel= r \id_{RB} %D B2 B3 |-> %D B0 B3 harrownodes nil 20 nil <-| sl^ %D %D C0 C1 <-| %D C0 C2 -> .plabel= l Lg C1 C3 -> .plabel= r g %D C2 C3 <-| %D C2 C4 -> .plabel= l ε_B C3 C4 <-| %D C0 C4 -> .slide= -15pt .plabel= l \sm{g^♭=\\Lg;ε_B} %D %D D1 D2 |-> D1 D3 -> .plabel= r η_A %D D2 D3 |-> %D D2 D4 -> .plabel= l f D3 D5 -> .plabel= r Rf %D D4 D5 |-> %D D1 D5 -> .slide= 15pt .plabel= r \sm{f^♯=\\η_A;Rf} %D %D E0 E1 <-| %D E0 E4 -> .plabel= l \sm{Lα=\\(α;η_A)^♭} E1 E3 -> .plabel= r α %D E3 E4 |-> E3 E5 -> .plabel= r η_A %D E4 E5 |-> %D %D F0 F1 |-> %D F0 F2 -> .plabel= l ε_B F1 F2 <-| %D F1 F5 -> .plabel= r \sm{Rβ=\\ε_B;β} %D F2 F4 -> .plabel= l β %D F4 F5 |-> %D )) %D enddiagram %D $$\pu \diag{??} $$ Theorem 2. $〈L,R,♯〉:\catA→\catB$ is completely determined by: (i) $L, R, η$, with each $η_A$ universal (ii) $G, F_0$ and universal arrows $η_A$ (iii) $F, G, ε$ with each $ε_a$ universal (iv) $F, G_0$ and universal arrows $ε_a$ (v) \newpage % __ __ _ % | \/ | ___ _ __ __ _ __| |___ % | |\/| |/ _ \| '_ \ / _` |/ _` / __| % | | | | (_) | | | | (_| | (_| \__ \ % |_| |_|\___/|_| |_|\__,_|\__,_|___/ % % «monads» (to ".monads") % (cw7p 19 "monads") % (cw7 "monads") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 137) "VI. Monads and Algebras") % (find-cwm2text (+ 9 137) "VI. Monads and Algebras") % (find-cwm2page (+ 9 137) "1. Monads in a Category") \label{monads} \par CWM2 \par VI. Monads and Algebras \par p.137: Monads \bsk Fix $X$, $T:X→X$, $μ:T^2 \mtnto T$, $η:I_X \mtnto T$. Then we can make a diagram: %D diagram monads-1 %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 A0 -> A1 <- A2 C0 -> C1 <- C2 %D 2D %D 2D +20 B0 -> B1 <- B2 D0 -> D1 <- D2 %D 2D | \ | | | \ | | %D 2D | \ | | | \ | | %D 2D v v v v v v v v %D 2D +30 B3 -> B4 <- B5 D3 -> D4 <- D5 %D 2D %D ren A0 A1 A2 ==> I T T^2 %D ren B0 B1 B2 ==> T T^2 T^3 %D ren B3 B4 B5 ==> T^2 T T^2 %D %D ren C0 C1 C2 ==> x Tx T^2x %D ren D0 D1 D2 ==> Tx T^2x T^3x %D ren D3 D4 D5 ==> T^2x Tx T^2x %D %D (( A0 A1 -> .plabel= a η A1 A2 <- .plabel= a μ %D %D B0 B1 -> .plabel= a Tη B1 B2 <- .plabel= a Tμ %D B0 B3 -> .plabel= a ηT B0 B4 -> .plabel= m \id %D B1 B4 -> .plabel= r μ B2 B5 -> .plabel= r μT %D B3 B4 -> .plabel= b μ B4 B5 <- .plabel= b μ %D %D C0 C1 -> .plabel= a ηx C1 C2 <- .plabel= a μx %D %D D0 D1 -> .plabel= a T(ηx) D1 D2 <- .plabel= a T(μx) %D D0 D3 -> .plabel= a η(Tx) D0 D4 -> .plabel= m \id %D D1 D4 -> .plabel= r μx D2 D5 -> .plabel= r μ(Tx) %D D3 D4 -> .plabel= b μx D4 D5 <- .plabel= b μx %D %D )) %D enddiagram %D $$\pu \diag{monads-1} $$ A {\sl monad $T=\ang{T,η,μ}$ in a category $X$} is a triple as above that obeys $μ∘ηT = I_X = μ∘Tη$ and $μ∘Tμ=μ∘μT$. \newpage % __ __ _ _ % | \/ | ___ _ __ __ _ __| |___ __ _| | __ _ ___ % | |\/| |/ _ \| '_ \ / _` |/ _` / __| / _` | |/ _` / __| % | | | | (_) | | | | (_| | (_| \__ \ | (_| | | (_| \__ \ % |_| |_|\___/|_| |_|\__,_|\__,_|___/ \__,_|_|\__, |___/ % |___/ % % «monads-algebras» (to ".monads-algebras") % (cw7p 20 "monads-algebras") % (cw7 "monads-algebras") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 139) "2. Algebras for a Monad") % (find-cwm2text (+ 9 139) "2. Algebras for a Monad") \par CWM2 \par VI. Monads and Algebras \par 2. Algebras for a monad \par p.140: $T$-algebras \bsk Fix $X$ and a monad $T=\ang{T,η,μ}$ in $X$. A {\sl $T$-algebra} is a pair $\ang{x,h}$ with $x∈X$ and $h:Tx→x$ that obeys $\id_x = h∘ηx$, $h∘μx=h∘Th$: % %D diagram algebra-1 %D 2Dx 100 +30 +30 %D 2D 100 A0 -> A1 <- A2 %D 2D \ | | %D 2D v v v %D 2D +30 A3 <- A4 %D 2D %D ren A0 A1 A2 A3 A4 ==> x Tx T^2x x Tx %D %D (( A0 A1 -> .plabel= a ηx A1 A2 <- .plabel= a μx %D A0 A3 -> .plabel= l \id A1 A3 -> .plabel= r h A2 A4 -> .plabel= r Th %D A3 A4 <- .plabel= b h %D )) %D enddiagram %D %D diagram algebra-2 %D 2Dx 100 +30 +30 %D 2D 100 A0 -> A1 <- A2 %D 2D | / / %D 2D v v v %D 2D +30 A3 <- A4 %D 2D %D ren A0 A1 A2 A3 A4 ==> x Tx T^2x x Tx %D %D (( A0 A1 -> .plabel= a ηx A1 A2 <- .plabel= a μx %D A0 A3 -> .plabel= l \id A1 A3 -> .plabel= r h A2 A4 -> .plabel= r Th %D A3 A4 <- .plabel= b h %D )) %D enddiagram %D $$\pu \diag{algebra-1} \quad \text{or} \quad \diag{algebra-2} $$ % (find-cwm2page (+ 9 139) "2. Algebras for a Monad") % (find-cwm2text (+ 9 139) "2. Algebras for a Monad") A morphism $f:\ang{x,h}→\ang{x',h'}$ (in the category $X^T$ of $T$-algebras) is a morphism $f:x→x'$ obeying $f∘h = h'∘Tf$. % %D diagram algebra-3 %D 2Dx 100 +30 %D 2D 100 x <-- Tx %D 2D | | %D 2D v v %D 2D +30 x' <- Tx' %D 2D %D (( x Tx <- .plabel= a h %D x x' -> .plabel= l f Tx Tx' -> .plabel= r Tf %D x' Tx' <- .plabel= b h' %D )) %D enddiagram %D $$\pu \diag{algebra-3} $$ \newpage % __ __ _ % | \/ | ___ _ __ __ _ __| |___ _____ _____ % | |\/| |/ _ \| '_ \ / _` |/ _` / __| / _ \ \/ / __| % | | | | (_) | | | | (_| | (_| \__ \ | __/> <\__ \ % |_| |_|\___/|_| |_|\__,_|\__,_|___/ \___/_/\_\___/ % % «monads-examples» (to ".monads-examples") % (cw7p 21 "monads-examples") % (cw7 "monads-examples") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 139) "2. Algebras for a Monad") % (find-cwm2text (+ 9 139) "2. Algebras for a Monad") \par CWM2 \par VI. Monads and Algebras \par First examples \bsk Let $M$ be a monoid. We will call its identity $e$ and its elements $a,b,c$, etc. Multiplication in $M$ will be written as $ab$. Let $Q,R,S$ be (arbitrary) sets. Then $T=(×M):\Set→\Set$ and $\ang{×M, η, μ}$ is a monad on $\Set$, where: $\begin{array}{rcrcl} ηS &:& S &→& S×M \\ && s &↦& \ang{s,e} \\ \end{array} $ % \quad and \quad % $\begin{array}{rcrcl} μS &:& (S×M)×M &→& S×M \\ && \ang{\ang{s,a},b} &↦& \ang{s,ab}. \\ \end{array} $ In $λ$-notation they are $η = λS.λs.〈s,e〉$ and $μ = λS.λ〈〈s,a〉,b〉.〈s,ab〉$. Note that the conditions on $η$ and $μ$, that we gave abstractly as: % %D diagram monads-1 %D 2Dx 100 +30 +30 +30 +30 +30 %D 2D 100 A0 -> A1 <- A2 C0 -> C1 <- C2 %D 2D %D 2D +20 B0 -> B1 <- B2 D0 -> D1 <- D2 %D 2D | \ | | | \ | | %D 2D | \ | | | \ | | %D 2D v v v v v v v v %D 2D +30 B3 -> B4 <- B5 D3 -> D4 <- D5 %D 2D %D ren A0 A1 A2 ==> I T T^2 %D ren B0 B1 B2 ==> T T^2 T^3 %D ren B3 B4 B5 ==> T^2 T T^2 %D %D ren C0 C1 C2 ==> x Tx T^2x %D ren D0 D1 D2 ==> Tx T^2x T^3x %D ren D3 D4 D5 ==> T^2x Tx T^2x %D %D (( # A0 A1 -> .plabel= a η A1 A2 <- .plabel= a μ %D # %D # B0 B1 -> .plabel= a Tη B1 B2 <- .plabel= a Tμ %D # B0 B3 -> .plabel= a ηT B0 B4 -> .plabel= m \id %D # B1 B4 -> .plabel= r μ B2 B5 -> .plabel= r μT %D # B3 B4 -> .plabel= b μ B4 B5 <- .plabel= b μ %D %D C0 C1 -> .plabel= a ηx C1 C2 <- .plabel= a μx %D %D D0 D1 -> .plabel= a T(ηx) D1 D2 <- .plabel= a T(μx) %D D0 D3 -> .plabel= a η(Tx) D0 D4 -> .plabel= m \id %D D1 D4 -> .plabel= r μx D2 D5 -> .plabel= r μ(Tx) %D D3 D4 -> .plabel= b μx D4 D5 <- .plabel= b μx %D %D )) %D enddiagram %D $$\pu \diag{monads-1} $$ become: %D diagram monads-xM %D 2Dx 100 +35 +5 +5 +30 +10 +40 %D 2D 100 A0 ---------> A1 A2 <------- A3 %D 2D %D 2D +20 B0 ---------> B1 C0 <------- C1 %D 2D | \ | | | %D 2D | \ | | | %D 2D | \ | | | %D 2D | \ v v | %D 2D +25 | v B3 C2 | %D 2D +5 v B4 v %D 2D +5 B2 -> B5 C3 <---- C4 %D 2D %D ren A0 A1 ==> q 〈q,e〉 %D ren B0 B1 B2 B4 ==> 〈q,a〉 〈〈q,e〉,a〉 〈〈q,a〉,e〉 〈q,a〉 %D ren B5 B3 ==> 〈q,ea〉 〈q,ae〉 %D ren A2 A3 ==> 〈q,ab〉 〈〈q,a〉,b〉 %D ren C0 C1 C4 ==> 〈〈q,ab〉,c〉 〈〈〈q,a〉,b〉,c〉 〈〈q,a〉,bc〉 %D ren C2 C3 ==> 〈q,(ab)c〉 〈q,a(bc)〉 %D %D (( A0 A1 |-> %D B0 B1 |-> B0 B2 |-> B0 B4 |-> %D B2 B5 |-> B1 B3 |-> %D %D A2 A3 <-| %D C0 C1 <-| C0 C2 |-> C1 C4 |-> %D C3 C4 <-| %D )) %D enddiagram %D $$\pu \diag{monads-xM} $$ \newpage % __ __ _ ____ % | \/ | ___ _ __ __ _ __| |___ _____ _____ |___ \ % | |\/| |/ _ \| '_ \ / _` |/ _` / __| / _ \ \/ / __| __) | % | | | | (_) | | | | (_| | (_| \__ \ | __/> <\__ \ / __/ % |_| |_|\___/|_| |_|\__,_|\__,_|___/ \___/_/\_\___/ |_____| % % «monads-examples-2» (to ".monads-examples-2") % (cw7p 22 "monads-examples-2") % (cw7 "monads-examples-2") % (find-books "__cats/__cats.el" "maclane") % (find-cwm2page (+ 9 139) "2. Algebras for a Monad") % (find-cwm2text (+ 9 139) "2. Algebras for a Monad") \label{monads-examples-2} \par CWM2 \par VI. Monads and Algebras \par First examples (2) \bsk Fix a monoid $M$ and sets $Q, R$. An {\sl action of $M$ on a set $Q$} is a map $\begin{array}[t]{rcrcl} h &:& Q×M &→& Q \\ && \ang{q,a} &↦& qa \\ \end{array} $ obeying $q(ab)=(qa)b$ and $qe=q$. An {\sl action of $M$ on a set $R$} is a map $\begin{array}[t]{rcrcl} h' &:& R×M &→& R \\ && \ang{r,a} &↦& qa \\ \end{array} $ obeying $r(ab)=(ra)b$ and $re=r$. Note that we don't {\sl write} $h$ or $h'$. \newpage % _ __ % | |/ /__ _ _ __ % | ' // _` | '_ \ % | . \ (_| | | | | % |_|\_\__,_|_| |_| % % «kan-1» (to ".kan-1") % (cw7p 23 "kan-1") % (cw7 "kan-1") % (find-cwm2page (+ 9 83) "unit and counit") % (find-cwm2page (+ 7 233) "X. Kan Extensions") % (find-cwm2page (+ 7 233) "1. Adjoints and Limits") % (find-cwm2page (+ 7 235) "2. Weak Universality") % (find-cwm2page (+ 7 236) "3. The Kan Extension") % (find-cwm2page (+ 7 240) "4. Kan Extensions as Coends") % (find-cwm2page (+ 7 243) "5. Pointwise Kan Extensions") % (find-cwm2page (+ 7 245) "6. Density") % (find-cwm2page (+ 7 248) "7. All Concepts Are Kan Extensions") % (cw7p 15) {\bf Kan extensions in my notation} \ssk Archetypal example: the functor $Δ:\Set→\Set^{••}$ has both adjoints: $\text{Colim}⊣Δ⊣\text{Lim}$. I will refer to the unit $η$ of $\text{Colim}⊣Δ$ as $\text{injs}$ and to the counit $ε$ of $Δ⊣\text{Lim}$ as $\text{projs}$. \def\D#1#2{{(#1\phantom{E}#2)}} %D diagram my-kan-1 %D 2Dx 100 +40 +40 %D 2D 100 L1 A1 |--> A2 %D 2D | | | %D 2D v | <--> | %D 2D +30 L2 v v %D 2D +5 A3 <--| A4 %D 2D +5 L3 | | %D 2D | | <--> | %D 2D v v v %D 2D +30 L4 A5 |--> A6 %D 2D %D 2D +20 A7 <==> A8 %D 2D %D ren A1 A2 ==> \D{B}{C} B{+}C %D ren A3 A4 ==> \D{D}{D} D %D ren A5 A6 ==> \D{E}{F} E{×}F %D ren A7 A8 ==> \Set^{••} \Set %D ren L1 L2 ==> \D{B}{C} \D{B{+}C}{B{+}C} %D ren L3 L4 ==> \D{E{×}F}{E{×}F} \D{E}{F} %D %D (( A1 A2 |-> %D A1 A3 -> A2 A4 -> %D A3 A4 <-| %D A3 A5 -> A4 A6 -> %D A5 A6 |-> %D A7 A8 -> sl^^ .plabel= a \text{Colim} %D A7 A8 <- .plabel= m Δ %D A7 A8 -> sl__ .plabel= b \text{Lim} %D %D L1 L2 -> .plabel= l \text{injs}_\D{B}{C} %D L3 L4 -> .plabel= l \text{projs}_\D{E}{F} %D )) %D enddiagram %D $$\pu \diag{my-kan-1} $$ %D diagram my-kan-2 %D 2Dx 100 +45 +60 +45 +60 %D 2D 100 B1 |--> B2 ---> B3 <--| B4 \Init %D 2D || || | | %D 2D || || v v %D 2D +25 B5 |--> B6 ---> B7 <--| B8 %D 2D %D 2D +20 B9 ---> B10 == B11 <-- B12 %D 2D %D 2D +30 C1 |--> C2 ---> C3 <--| C4 %D 2D | | || || %D 2D v v || || %D 2D +25 C5 |--> C6 ---> C7 <--| C8 \Term %D 2D %D 2D +20 C9 ---> C10 == C11 <-- C12 %D 2D %D ren B1 B2 B3 B4 ==> • \D{B}{C} \D{B{+}C}{B{+}C} B{+}C %D ren B5 B6 B7 B8 ==> • \D{B}{C} \D{D}{D} D %D ren B9 B10 B11 B12 ==> 1 \Set^{••} \Set^{••} \Set %D %D ren C1 C2 C3 C4 ==> D \D{D}{D} \D{E}{F} • %D ren C5 C6 C7 C8 ==> E{×}F \D{E{×}F}{E{×}F} \D{E}{F} • %D ren C9 C10 C11 C12 ==> \Set \Set^{••} \Set^{••} 1 %D %D (( B1 B2 |-> B2 B3 -> .plabel= a \D{i}{i'} B3 B4 <-| %D B1 B5 = B2 B6 = B3 B7 -> B4 B8 -> %D B5 B6 |-> B6 B7 -> B7 B8 <-| %D B9 B10 -> .plabel= a \Sel_\D{B}{C} B10 B11 = B11 B12 <- .plabel= a Δ %D \Init place %D )) %D %D (( C1 C2 |-> C2 C3 -> C3 C4 <-| %D C1 C5 = C2 C6 = C3 C7 -> C4 C8 -> %D C5 C6 |-> C6 C7 -> .plabel= a \D{π}{π'} C7 C8 <-| %D C9 C10 -> .plabel= a Δ C10 C11 = C11 C12 <- .plabel= a \Sel_\D{E}{F} %D \Term place %D )) %D enddiagram %D $$\pu \def\Init{⇐ \begin{tabular}[c]{l} $(•, \D{i}{i'}, B{+}C)$ \\ is an initial object in \\ $(\Sel_\D{B}{C}↓Δ)$ \end{tabular} } \def\Term{⇐ \begin{tabular}[c]{l} $(E{×}F, \D{π}{π'}, •)$ \\ is a terminal object in \\ $(Δ↓\Sel_\D{E}{F})$ \end{tabular} } \diag{my-kan-2} $$ \newpage % _ __ ____ % | |/ /__ _ _ __ |___ \ % | ' // _` | '_ \ __) | % | . \ (_| | | | | / __/ % |_|\_\__,_|_| |_| |_____| % % «kan-2» (to ".kan-2") % (cw7p 24 "kan-2") % (cw7 "kan-2") {\bf Kan extensions in my notation} \ssk Archetypal example: the functor $f^*:\Set^4→\Set^6$ has both adjoints: $\text{Colim}⊣f^*⊣\text{Lim}$. I will refer to the unit $η$ of $\text{Colim}⊣f^*$ as $\text{injs}$ and to the counit $ε$ of $f^*⊣\text{Lim}$ as $\text{projs}$. \def\D#1#2{{(#1\phantom{E}#2)}} \def\misp{\!\!\!\!\!\!\!\!\!\!} \def\mi{\misp→\misp} \def\Four#1#2#3#4{ \left(\mat{ & & #1 \\ & & ↓ \\ #2 &\mi& #3 \\ ↓ & & \\ #4 & & \\ }\right) } \def\Six#1#2#3#4#5#6{ \left(\mat{ #1 &\mi& #2 \\ ↓ & & ↓ \\ #3 &\mi& #4 \\ ↓ & & ↓ \\ #5 &\mi& #6 \\ }\right) } %D diagram my-kan-1 %D 2Dx 100 +60 +60 +60 %D 2D 100 L1 A1 |--> A2 R1 %D 2D | | | | %D 2D v | <--> | | %D 2D +60 L2 v v v %D 2D +5 A3 <--| A4 R2 %D 2D +5 L3 | | | %D 2D | | <--> | | %D 2D v v v v %D 2D +60 L4 A5 |--> A6 R3 %D 2D %D 2D +40 A7 <==> A8 %D 2D %D ren A1 A2 ==> \Four{C_2}{C_3}{C_4}{C_5} \Six{0}{C_2}{C_3}{C_4}{C_5}{C_\text{po}} %D ren A3 A4 ==> \Four{D_2}{D_3}{D_4}{D_5} \Six{D_1}{D_2}{D_3}{D_4}{D_5}{D_6} %D ren A5 A6 ==> \Four{E_2}{E_3}{E_4}{E_5} \Six{E_\text{pb}}{E_2}{E_3}{E_4}{E_5}{1} %D ren A7 A8 ==> \Set^4 \Set^6 %D ren R1 ==> \Six{0}{D_2}{D_3}{D_4}{D_5}{D_\text{po}} %D ren R2 ==> \Six{D_1}{D_2}{D_3}{D_4}{D_5}{D_6} %D ren R3 ==> \Six{D_\text{pb}}{D_2}{D_3}{D_4}{D_5}{1} %D %D (( A1 A2 |-> %D A1 A3 -> A2 A4 -> %D A3 A4 <-| %D A3 A5 -> A4 A6 -> %D A5 A6 |-> %D A7 A8 -> sl^^ .plabel= a \text{Colim} %D A7 A8 <- .plabel= m f^* %D A7 A8 -> sl__ .plabel= b \text{Lim} %D %D R1 R2 -> .plabel= r \text{injs}_\D{B}{C} %D R2 R3 -> .plabel= r \text{projs}_\D{E}{F} %D )) %D enddiagram %D $$\pu \diag{my-kan-1} $$ \newpage % _ __ ____ _____ __ % | |/ /__ _ _ __ |___ \|___ / / /_ % | ' // _` | '_ \ __) | |_ \| '_ \ % | . \ (_| | | | | / __/ ___) | (_) | % |_|\_\__,_|_| |_| |_____|____/ \___/ % % «kan-236» (to ".kan-236") % (cw7p 25 "kan-236") % (cw7 "kan-236") % (find-cwm2page (+ 7 236) "3. The Kan Extension") {\bf Kan extensions in my notation} \ssk \def\Ran{\text{Ran}} %D diagram universal-from-S-to-c %D 2Dx 100 +30 +25 %D 2D 100 B0 <-| B1 %D 2D | | %D 2D v v %D 2D +20 B2 <-| B3 == B3' %D 2D | %D 2D v %D 2D +20 B4 %D 2D %D 2D +15 C0 <-- C1 %D 2D %D 2D +15 D0 --> D1 %D %D ren B0 B1 B2 B3 B4 ==> SK S RK R T %D ren B3' ==> \Ran_K{T} %D ren C0 C1 ==> A^M A^C %D ren D0 D1 ==> M C %D %D (( B0 B1 <-| .plabel= a A^K %D B0 B2 -> .plabel= l σK B1 B3 -> .plabel= r σ %D B2 B3 <-| .plabel= a A^K %D B3 B3' = %D B2 B4 -> .plabel= l ε %D B0 B4 -> .plabel= l α .slide= -20pt %D C0 C1 <- .plabel= a A^K %D D0 D1 -> .plabel= a K %D )) %D enddiagram %D $$\pu \diag{universal-from-S-to-c} $$ % % f % • |--> c --> Km <---| m % % • |--> c --> Km' <--| m' % f' % % % % % (c↓K) --Q--> M --T--> A % % \end{document} % Local Variables: % coding: utf-8-unix % ee-anchor-format: "«%s»" % ee-tla: "cw7" % End: