Warning: this is an htmlized version!
The original is here, and the conversion rules are here. |
% (find-angg "LATEX/2017-2-GA-P2.tex") % (defun c () (interactive) (find-LATEXsh "lualatex -record 2017-2-GA-P2.tex")) % (defun d () (interactive) (find-xpdfpage "~/LATEX/2017-2-GA-P2.pdf")) % (defun b () (interactive) (find-zsh "bibtex 2017-2-GA-P2; makeindex 2017-2-GA-P2")) % (defun e () (interactive) (find-LATEX "2017-2-GA-P2.tex")) % (defun u () (interactive) (find-latex-upload-links "2017-2-GA-P2")) % (find-xpdfpage "~/LATEX/2017-2-GA-P2.pdf") % (find-sh0 "cp -v ~/LATEX/2017-2-GA-P2.pdf /tmp/") % (find-sh0 "cp -v ~/LATEX/2017-2-GA-P2.pdf /tmp/pen/") % file:///home/edrx/LATEX/2017-2-GA-P2.pdf % file:///tmp/2017-2-GA-P2.pdf % file:///tmp/pen/2017-2-GA-P2.pdf % http://angg.twu.net/LATEX/2017-2-GA-P2.pdf % «.gab-1» (to "gab-1") % «.gab-2a-2j» (to "gab-2a-2j") % «.gab-2k-2s» (to "gab-2k-2s") % «.gab-3» (to "gab-3") % «.gab-4» (to "gab-4") \documentclass[oneside]{book} \usepackage[colorlinks]{hyperref} % (find-es "tex" "hyperref") %\usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{pict2e} \usepackage{color} % (find-LATEX "edrx15.sty" "colors") \usepackage{colorweb} % (find-es "tex" "colorweb") %\usepackage{tikz} % % (find-dn6 "preamble6.lua" "preamble0") %\usepackage{proof} % For derivation trees ("%:" lines) %\input diagxy % For 2D diagrams ("%D" lines) %\xyoption{curve} % For the ".curve=" feature in 2D diagrams % \usepackage{edrx15} % (find-angg "LATEX/edrx15.sty") \input edrxaccents.tex % (find-angg "LATEX/edrxaccents.tex") \input edrxchars.tex % (find-LATEX "edrxchars.tex") \input edrxheadfoot.tex % (find-dn4ex "edrxheadfoot.tex") \input edrxgac2.tex % (find-LATEX "edrxgac2.tex") % \begin{document} \catcode`\^^J=10 \directlua{dednat6dir = "dednat6/"} \directlua{dofile(dednat6dir.."dednat6.lua")} \directlua{texfile(tex.jobname)} \directlua{verbose()} %\directlua{output(preamble1)} \def\expr#1{\directlua{output(tostring(#1))}} \def\eval#1{\directlua{#1}} \def\pu{\directlua{pu()}} \directlua{dofile "edrxtikz.lua"} % (find-LATEX "edrxtikz.lua") \directlua{dofile "edrxpict.lua"} % (find-LATEX "edrxpict.lua") %L V.__tostring = function (v) return format("(%.3f,%.3f)", v[1], v[2]) end \pu \def\V(#1){\VEC{#1}} \def\und#1#2{\underbrace{#1}_{#2}} % ____ _ _ _ % / ___|__ _| |__ ___ ___ __ _| | |__ ___ % | | / _` | '_ \ / _ \/ __/ _` | | '_ \ / _ \ % | |__| (_| | |_) | __/ (_| (_| | | | | | (_) | % \____\__,_|_.__/ \___|\___\__,_|_|_| |_|\___/ % {\setlength{\parindent}{0em} \footnotesize \par Geometria Analítica \par PURO-UFF - 2017.2 \par P2 - 11/dez/2017 - Eduardo Ochs \par Respostas sem justificativas não serão aceitas. \par Diagramas muito ambíguos {\sl serão} interpretados errado. \par Proibido usar quaisquer aparelhos eletrônicos. } \bsk \bsk \setlength{\parindent}{0em} \def\T(Total: #1 pts){{\bf(Total: #1 pts)}} \def\T(Total: #1 pts){{\bf(Total: #1)}} \def\B (#1 pts){{\bf(#1 pts)}} % Usage: % 1) \T(Total: 2.34 pts) Foo % a) \B(0.45 pts) Bar Lembre que uma equação de cônica é uma equação da forma $ax^2 + bxy + cy^2 + dx + ey + f = 0$; $4+(x+y)(x-y)=5y$ não é uma equação de cônica mas é equivalente a uma: $x^2-y^2-5y+4=0$. E o truque pra gente se livrar das duas raízes quadradas em $√A + √B = C$ ou $√A - √B = C$ é: % $$\begin{array}{rcl} √A + √B = C &⇒& C^2(C^2 - 2(A+B)) + (A-B)^2 = 0 \\ √A - √B = C &⇒& C^2(C^2 - 2(A+B)) + (A-B)^2 = 0 \\ \end{array} $$ % Nas questões 3 e 4 vamos usar a abreviação $[\text{equação}] = % \setofxyzst{\text{equação}}$. \bsk 1) \T(Total: 1.5 pts) Use as fórmulas acima para transformar % $$d((x,y),(-2,0))-d((x,y),(2,0))=2$$ % numa equação de cônica e verifique se os seguintes pontos obedecem a equação original e a equação da cônica: $(1,0)$, $(2,3)$, $(-2,3)$, $(-1,0)$. \bsk % \def\myu {\frac{x-4}{2}} % \def\myv { y-\frac{x}{2} } \def\myu {y-x/2-3} \def\myv {y+x/2-3} \def\myuu{\und{\textstyle\myu}{u}} \def\myvv{\und{\textstyle\myv}{v}} 2) \T(Total: 4.5 pts) Faça esboços das cônicas com as equações abaixo. Algumas delas são degeneradas. Em todos os itens abaixo considere que $u=2y$ e $v=x+y$ --- ou que $u$ e $v$ são {\sl abreviações} para $2y$ e $x+y$. % $$ \begin{tabular}[t]{rl} a) (0.1 pts) & $x^2+y^2=1$ \\ b) (0.1 pts) & $x^2+y^2=4$ \\ c) (0.1 pts) & $x^2+y^2=0$ \\ d) (0.1 pts) & $xy=1$ \\ e) (0.1 pts) & $xy=4$ \\ f) (0.1 pts) & $xy=0$ \\ g) (0.1 pts) & $xy=-1$ \\ h) (0.1 pts) & $x^2=y$ \\ i) (0.1 pts) & $x=y^2$ \\ j) (0.1 pts) & $x^2=y^2$ \\ \end{tabular} \quad \begin{tabular}[t]{rl} k) (0.5 pts) & $u(u-1)=0$ \\ l) (0.5 pts) & $v(v-1)=0$ \\[4pt] m) (0.2 pts) & $u^2+v^2=0$ \\ n) (0.3 pts) & $u^2+v^2=1$ \\[4pt] o) (0.2 pts) & $uv=0$ \\ p) (0.4 pts) & $uv=1$ \\ q) (0.4 pts) & $uv=-1$ \\[4pt] r) (0.5 pts) & $u^2=v$ \\ s) (0.5 pts) & $u=v^2$ \\ \end{tabular} $$ \bsk 3) \T(Total: 1.5 pts) Dê uma parametrização para a reta que pertence aos planos $x+y+z=3$ e $x+2z=3$. \bsk 4) \T(Total: 2.5 pts) Sejam: % $$\begin{array}{rcl} r &=& \setofst{(t,t,0)}{t∈\R} \\ s &=& \setofst{(2t,-2t,4)}{t∈\R} \\ r' &=& \setofst{(t,t,0)}{t∈\R} \\ s' &=& \setofst{(t,0,3-t}{t∈\R} \\ \end{array} $$ a) \B(0.1 pts) Calcule $d(r,s)$ no olhômetro. a) \B(0.9 pts) Calcule $d(r,s)$ pela fórmula. c) \B(1.5 pts) Calcule $d(r',s')$ pela fórmula. \newpage % ____ _ _ _ % / ___| __ _| |__ __ _ _ __(_) |_ ___ % | | _ / _` | '_ \ / _` | '__| | __/ _ \ % | |_| | (_| | |_) | (_| | | | | || (_) | % \____|\__,_|_.__/ \__,_|_| |_|\__\___/ % {\bf Gabarito} (versão não revisada) \msk % _ % / | % | | % | | % |_| % % «gab-1» (to ".gab-1") 1) $d((x,y),(-2,0))-d((x,y),(2,0))=2$ $⇒ \sqrt{(x+2)^2+y^2} - \sqrt{(x-2)^2+y^2} = 2$. Sejam $C=2$, $A = (x+2)^2+y^2 = x^2+4x+4+y^2$, $B = (x-2)^2+y^2 = x^2-4x+4+y^2$; então $A-B=8x$ e $A+B=2(x^2+4+y^2)$. $√A - √B = C ⇒ C^2(C^2 - 2(A+B)) + (A-B)^2 = 0$ $⇒ 4(4 - 4(x^2+4+y^2)) + (8x)^2 = 0$ $⇒ (-16x^2 - 16y^2 - 64 + 16) + 64x^2 = 0$ $⇒ 48x^2 - 16y^2 - 48 = 0$ \msk $\begin{array}{ccc} (x,y) & d((x,y),(-2,0))-d((x,y),(2,0))=0 & 48x^2 - 16y^2 - 48=0 \\\hline (1,0) & 3-1=2 & 48-0-48 = 0 \\ (2,3) & 5-3=2 & 192-144-48=0 \\ (-2,3) & 5-3=2 & 192-144-48=0 \\ (-1,0) & 1-2≠-2 & 48-0-48=0 \\ \end{array} $ % ____ % |___ \ % __) | % / __/ % |_____| % \unitlength=5pt \def\closeddot{\circle*{0.6}} \def\pictpoint#1{\put(#1){\closeddot}} \def\pictline#1{{\linethickness{1.0pt}\expr{Line.new(#1):pict()}}} \def\pictlinethin#1{{\linethickness{0.2pt}\expr{Line.new(#1):pict()}}} \def\pictLine(#1)(#2)#3{% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictline{#3} \end{picture}% }}% } \def\pictellipse#1{{\linethickness{1.0pt}\expr{Ellipse.new(#1):pict()}}} \def\pictEllipse(#1)(#2)#3{% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictellipse{#3} \end{picture}% }}% } \def\pictEllipseF(#1)(#2)#3(#4)(#5){% \vcenter{\hbox{% \beginpicture(#1)(#2)% \pictaxes% \pictellipse{#3} \put(#4){\closeddot} \put(#5){\closeddot} \end{picture}% }}% } \def\picthyperbole#1#2{{\linethickness{1.0pt}\expr{Hyperbole.new(#1):pict(#2)}}} \def\pictparabola #1#2{{\linethickness{1.0pt}\expr{Parabola .new(#1):pict(#2)}}} % (find-LATEX "edrxtikz.lua" "Line") \def\mygrid{ \pictlinethin{v(0, 0), v(1, 0), -3, 3} % 2y = 0 \pictlinethin{v(0, .5), v(1, 0), -3, 3} % 2y = 1 \pictlinethin{v(0,-.5), v(1, 0), -3, 3} % 2y = -1 \pictlinethin{v(0, 0), v(1, -1), -2, 2} % x+y = 0 \pictlinethin{v(0, 1), v(1, -1), -1, 3} % x+y = 1 \pictlinethin{v(0,-1), v(1, -1), -3, 1} % x+y = -1 } % ____ ____ _ % |___ \ __ _ |___ \ (_) % __) / _` |_____ __) || | % / __/ (_| |_____/ __/ | | % |_____\__,_| |_____|/ | % |__/ % % «gab-2a-2j» (to ".gab-2a-2j") \unitlength=7.5pt \def\closeddot{\circle*{0.4}} 2a) % a) x^2+y^2=1 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictellipse{v(0,0), v(1,0), v(0,1)} % \pictline{v(0,0), v(1,0), -2, 2} % \pictline{v(0,0), v(0,1), -2, 2} \end{picture}% }}$ \; 2b) % b) x^2+y^2=4 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictellipse{v(0,0), v(2,0), v(0,2)} %\pictline{v(0,0), v(1,1), -2, 2} %\pictline{v(0,0), v(1,-1), -2, 2} \end{picture}% }}$ \; 2c) % c) x^2+y^2=0 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \put(0,0){\closeddot} %\pictline{v(0,1), v(1,0), -2, 2} %\pictline{v(0,2), v(1,0), -2, 2} \end{picture}% }}$ % \quad % 2d) % d) xy=1 $\vcenter{\hbox{% \beginpicture(-4,-4)(4,4)% \pictaxes% \picthyperbole{v(0,0), v(1,0), v(0,1), 1}{10, -4, -1/4, 1/4, 4} \put(1,1){\closeddot} \put(-1,-1){\closeddot} %\pictline{v(0,0), v(-1,1), -2, 2} \end{picture}% }}$ \; 2e) % e) xy=4 $\vcenter{\hbox{% \beginpicture(-4,-4)(4,4)% \pictaxes% \picthyperbole{v(0,0), v(2,0), v(0,2), 1}{10, -2, -1/2, 1/2, 2} \put(2,2){\closeddot} \put(-2,-2){\closeddot} %\pictline{v(0,0), v(-1,1), -2, 2} \end{picture}% }}$ \; 2f) % f) xy=0 $\vcenter{\hbox{% \beginpicture(-3,-3)(3,3)% \pictaxes% \pictline{v(0,0), v(1,0), -3, 3} \pictline{v(0,0), v(0,1), -3, 3} \end{picture}% }}$ \; 2g) % g) xy=-1 $\vcenter{\hbox{% \beginpicture(-4,-4)(4,4)% \pictaxes% \picthyperbole{v(0,0), v(1,0), v(0,-1), 1}{10, -4, -1/4, 1/4, 4} \put(1,-1){\closeddot} \put(-1,1){\closeddot} \end{picture}% }}$ \; 2h) % h) x^2=y $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictparabola{v(0,0), v(1,0), v(0,1), 2}{10, -1.4, 1.4} \end{picture}% }}$ \quad 2i) % i) x=y^2 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictparabola{v(0,0), v(0,1), v(1,0), 2}{10, -1.4, 1.4} \end{picture}% }}$ \quad 2j) % j) x^2=y^2 $\vcenter{\hbox{% \beginpicture(-2,-2)(2,2)% \pictaxes% \pictline{v(0,0), v(1,1), -2, 2} \pictline{v(0,0), v(1,-1), -2, 2} \end{picture}% }}$ % ____ _ ____ % |___ \| | __ |___ \ ___ % __) | |/ /____ __) / __| % / __/| <_____/ __/\__ \ % |_____|_|\_\ |_____|___/ % % «gab-2k-2s» (to ".gab-2k-2s") \unitlength=7.5pt \def\closeddot{\circle*{0.4}} 2k) % k) u(u-1)=0 $\vcenter{\hbox{% \beginpicture(-3,-2)(3,2)% \pictaxes% \mygrid \pictline{v(0, 0), v(.5,-.5), -3, 3} \pictline{v(0, 1), v(.5,-.5), -1, 4} \end{picture}% }}$ \; 2l) % l) v(v-1)=0 $\vcenter{\hbox{% \beginpicture(-3,-2)(3,2)% \pictaxes% \mygrid \pictline{v(0, 0), v(1,0), -2, 2} \pictline{v(0,.5), v(1,0), -2.5, 1.5} \end{picture}% }}$ \; 2m) % m) u^2+v^2=0 $\vcenter{\hbox{% \beginpicture(-3,-2)(3,2)% \pictaxes% \mygrid \put(0,0){\closeddot} \end{picture}% }}$ \; 2n) % n) u^2+v^2=1 $\vcenter{\hbox{% \beginpicture(-3,-2)(3,2)% \pictaxes% \mygrid \pictellipse{v(0,0), v(1,0), v(.5,-.5)} % \picthyperbole{v(2,-2), v(1,0), v(-1,1), 1}{10, -4, -1/2, 1/4, 4} % \put(2,-2){\closeddot} % \pictline{v(0,-2), v(1,0), -1, 5} % y-2 = 0 % \pictline{v(0, 0), v(1,-1), -2, 4} % x+y = 0 \end{picture}% }}$ \; 2o) % o) uv=0 $\vcenter{\hbox{% \beginpicture(-3,-2)(3,2)% \pictaxes% \mygrid \pictline{v(0,0), v(1,0), -3, 3} \pictline{v(0,0), v(.5,-.5), -3, 3} \end{picture}% }}$ \quad 2p) % p) uv=1 $\vcenter{\hbox{% \beginpicture(-3,-2)(3,2)% \pictaxes% \mygrid \picthyperbole{v(0,0), v(1,0), v(-.5,.5), 1}{10, -3, -1/3, 1/3, 3} \end{picture}% }}$ \; 2q) % q) uv=-1 $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \picthyperbole{v(0,0), v(1,0), v(.5,-.5), 1}{10, -3, -1/3, 1/3, 3} \end{picture}% }}$ \; 2r) % r) u^2=v $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \pictparabola{v(0,0), v(1,0), v(-.5,.5), 2}{10, -1.4, 1.4} \end{picture}% }}$ \; 2s) $\vcenter{\hbox{% \beginpicture(-4,-2)(4,2)% \pictaxes% \mygrid \pictparabola{v(0,0), v(-.5,.5), v(1,0), 2}{10, -1.4, 1.4} % \pictellipse{v(4,6), v(2,0), v(0,3)} \end{picture}% }}$ \bsk % _____ % |___ / % |_ \ % ___) | % |____/ % % «gab-3» (to ".gab-3") 3) $z=\frac{3-x}{2}$, $y = 3-x-2 = 3 - x - \frac{3-x}{2} = \frac{3-x}{2}$, $r=\setofst{(x, \frac{3-x}{2} \frac{3-x}{2})}{x∈\R}$ \bsk % _ _ % | || | % | || |_ % |__ _| % |_| % % «gab-4» (to ".gab-4") 4) Sejam: $\begin{array}{lll} r = \setofst{(0,0,0)+\VEC{1,1,0}}{t∈\R}, & A=(0,0,0), & \uu=\VEC{1,1,0}, \\ s = \setofst{(0,0,4)+\VEC{2,-2,0}}{t∈\R}, & B=(0,0,4), & \vv=\VEC{2,-2,0}, \\ r' = \setofst{(0,0,0)+\VEC{1,1,0}}{t∈\R}, & A'=(0,0,0), & \uu'=\VEC{1,1,0}, \\ s' = \setofst{(0,0,3)+\VEC{1,0,-1}}{t∈\R}, & B'=(0,0,3), & \vv'=\VEC{1,0,-1}, \\ \end{array} $ 4a) 4 4b) $d(r,s) = |([\uu,\vv,\Vec{AB}]/\area(\uu,\vv))| = |(16/||\VEC{0,0,4}||)| = 4$ 4c) $d(r',s') = |([\uu',\vv',\Vec{A'B'}]/\area(\uu',\vv'))| = |(\vsm{1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 3 } / ||\VEC{1,1,-1}||)| = |3/\sqrt3| = \sqrt3$ \end{document} % Local Variables: % coding: utf-8-unix % End: